
~*1 ( 

CO 
<0 

ÜSÄAVLABS TECHNICAL REPORT 66-49 

DESIGN AND TEST EVALUATION OF A 
SUPERCRITICAL SPEED SHAFT 

L 
CLEARINGHOUSE 

Ft» FEDERAL SCIENTIFIC AND 
TRCHNICAL INFORMATION 

SiCO 
Vloroficte 

| A^O /Zf 
pp id 

iMi^i mm 

By 

Robert Baler 
lohn Mack 

June 1966 

Distrihntion of this 

document is unlimited. 

U. S. ARMY AVIATION MATERIEL LABORATORIES 
FORT EUSTIS, VIRGINIA 

CONTRACT DA 44-177-AMC-161(T) 
VERTOL DIVISION 

THE BOEING COMPANY 
MORTON, PENNSYLVANIA ._   r 

--■- -•—rrr- 



Disclaimers 

The findings in this report are not to be construed as an official Depart- 
ment of the Army position unless so designated by other authorized 
documents. 

When Government drawings,   specifications,   or other data are used for 
any purpose other than in connection with a definitely related Government 
procurement operation,  the United States Government thereby incurs no 
responsibility nor any obligation whatsoever; and the fact that the Govern- 
ment may have formulated,  furnished,  or in any way supplied the said 
drawings,   specifications,  or other data is not to be regarded by impli- 
cation or otherwise as in any manner licensing the holder or any other 
person or corporation,   or conveying any rights or permission,  to manu- 
facture,  use,  or sell any patented invention that may in any way be 
related thereto. 

Trade names cited in this report do not constitute an official endorse- 
ment or approval of the use of such commercial hardware or software. 

Disposition Instructions 

Destroy this report when no longer needed.    Do not return it to the 
originator. 

«CCESSIO* ftr 

CFSTI ■HITI SEMW (fil^' 
DOC in* sanu a 

Y frn 
tKTVJ tfirr^' 

DISirBUriDN'ftVMUtlUTI C09IS 

DIST.    i «MIL Md'or SPtO«. 

/ 

 —     ■     ,A I 



DEPARTMENT OF THE ARMY 
U. S. ARMY AVIATION MATERIEL LABORATORIES 

FORT EUSTIS. VIRGINIA   23604 

This report presents the results of a continuing research 
program for the Investigation of high-speed drive-system 
concepts for use In V/STOL aircraft. The main efforts 
of this program are directed toward: 

1. Design of a full-scale supercritical speed shaft 
system utilizing design criteria established 
with small-scale model shafts. 

2. Dynamic bench tests of a full-scale shaft 
system. 

3. Correlation of results of full-scale model 
tests with small-scale model tests. 

The extensive testing conducted under this program has 
successfully demonstrated the capability of slender and 
highly loaded power transmission shafting to operate 
safely at speeds significantly above the first critical 
speed. 
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SUMMARY 

This  report concludes a  study performed by Boeing-Vertol 
Division on the supercritical speed  shaft.     It presents the 
results of design and test parameters used to build a  full- 
size helicopter  interconnect shaft   for USAAVLABS under 
Contract DA 44-177-AMC-161(T). 

Program objectives were:     (1)   to relate presently developed 
supercritical  shaft  and model test  results  to a full-size heli- 
copter  interconnect  shaft;   (2)   to develop a  specification and 
preliminary design  for a  supercritical shaft damper  suitable 
for aircraft  installation;  and   (3)   to develop a systematic 
procedure and theoretical background for the balancing of 
supercritical speed shafts. 

A full-size supercritical speed shaft was built,  and the model- 
ing procedures and design criteria previously developed,  using 
small  size shafts,  were applied.    The full-size damped shaft 
operated satisfactorily and demonstrated its capability by 
running  successfully through the entire speed range   (0 to 8900 
revolutions per minute)   and beyond this to  9500 revolutions 
per minute. 

A number of damper design types were tested on the supercriti- 
cal  shaft.    A viscous damper appears  to be  a good choice for 
an aircraft type damper. 

Criteria of successful operation were established.    When the 
test  results were analyzed by these  criteria   (shown on page 13 2 
in Figure 76), the  following points were evident: 

The  supercritical shaft is feasible for helicopter 
operation. 

The supercritical shaft will be advantageous to the 
helicopter. 

It can therefore be concluded that the development of the 
supercritical  shaft  could proceed toward a helicopter  flight 
evaluation. 

in 



FOREWORD 

This  report covers  the development and testing by Boeing-Vertol 
Division of a supercritical speed shaft  for  eventual use  in 
helicopters.     It concludes the work authorized under USAAVLABS 
Contract DA 44-177-AMC-161(T)   to develop a  full-size synchro- 
nizing  shaft  system for the CH-47A helicopter. 

The work on the  supercritical speed shaft began on receipt of 
the contract on 6 July  1964,    The principal  investigators at 
Vertol Division were:     R.  Baier,  Project Engineer;  and J.  C. 
Mack,   Supervising Engineer.    Acknowledgment  is made to person- 
nel of Battelle Memorial Institute,  Messrs.   R.   Prouse,  H. 
Meacham and J.  Vorhees,   for the assistance and contribution 
they provided,  on a  subcontract effort,   during the program. 
Acknowledgment of appreciation is made  to  the USAAVLABS  repre- 
sentative,  Mr. Wayne Hudgins,   for his aid  in this program. 
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INTRODUCTION 

This report concludes a program by the Vertol Division to 
develop,   test,   and evaluate a full-size supercritical rotor 
interconnect  shaft  for the CH-47A helicopter.     The program 
was authorized by USAAVLABS Contract DA 44-177-AMC-161(T) , 
dated 6 July  1964. 

Vertol Division's awareness of the advantages of a  supercriti- 
cal shaft system  is evidenced by proposals for analytical 
study,  construction and testing of a  supercritical  shaft  sys- 
tem early in 1959.     Actual fabrication and testing of a 
company-funded model was under way  in  1961.    The results of 
this early work pointed out the need  for the development of a 
damper to successfully allow a shaft  to operate directly at 
its critical  speed  for extended periods of time. 

Battelle Memorial  Institute of Columbus,  Ohio,  was awarded an 
Air Force contract for model testing of supercritical  shafting 
in May 1961.     A procedure was developed which allowed modeled 
shafts to be  related to shafts of any material,   size and 
length in a dynamically similar manner.    An analogy between 
shafts operating  at their critical  speeds and electrical 
transmission  lines was formulated.     This analogy gave promise 
of being the basis upon which optimum damper parameters could 
be calculated  for any shaft.     Shafts designed by the electrical 
analogy method were subjected to variables such as torque, 
curvature,   axial  force,  external vibration,  eccentricity,   and 
moment restraint. 

The excellent performance obtained  in model tests by the use 
of this new design technique resulted  in establishing  a high 
degree of confidence that a full-size  shaft could be designed 
using these same  techniques   (transmission line analogy)   and 
that the  full-size  supercritical  speed shaft would perform in 
a satisfactory manner. 

Previous Battelle model investigation revealed that  the damper 
exerted the primary influence in controlling shaft vibrations 
during testing.     Additionally,   it was  found that variables of 
torque,  curvature,   or external vibration were of secondary 
importance because a damper could control a shaft through 
numerous critical  speeds. 



The electrical analogy,  past empirical results,   and model 
shaft testing constituted the  tools  available to Vertol to 
design the  full-scale shaft. 

This report presents an evaluation of the design tools,   the 
modifications to these tools made necessary by test experience, 
and the  final results of the modified approach. 



DISCUSSION 

GENERAL 

This  study covers the  first  recorded attempt wherein developed 
theory and design criteria obtained from model-size shaft in- 
vestigation were applied to a  full-size interconnect helicopter 
shaft.     Refer  to Figure  1. 

The weight and reliability of a shaft system for a given length 
and horsepower capacity are responsive to two areas of improve- 
ment: 

1. For weight - An increase  in rotational speed with con- 
sequent  lower  torque,   provided this  is not accompanied 
by the  increase in shaft  supports typical of subcritical 
systems. 

2. For reliability - A decrease in shaft discontinuities 
such as  reduced sections,   splines,   riveted joints, 
bearings and couplings. 

The supercritical shaft concept encompasses both  areas of 
improvement,   in that a successful system is capable of opera- 
tion with greatly increased  length of unsupported  shaft. 
Figure  2  indicates the improvements realized by  substituting 
a  supercritical shaft  for a  subcritical shaft while maintaining 
the same rotational speed and  torque capacity. 

Further improvements in the  future will be realized if inter- 
mediate gear reductions are eliminated as a result of the 
usable high-speed capability of the supercritical  shaft con- 
cept. 

The full-size supercritical design applies to a CH-47A heli- 
copter  shaft  system,  potentially operable  in all  respects 
except  for   the use of a  laboratory damper. 

The supercritical speed shaft  under  investigation  is of the 
same diameter,   and turns at the  same speed,   as an existing 
subcritical  shaft  system.     Diameter,   length and  shaft  speeds 
are dictated by present transmission ratios and  torque 
requirements. 



u 
H 

< 
U 
H 
EH 
CU 
O 

I 

(A 

Q 
U 
W 

<< 
U 
H     • 

H  U 

U  K 
CC  EH 
W 

(A <J 

W 

P 
Ü 
H 

.     WWW IÜJI 



LEGEND 

SUPERCRITICAL S 
SUBCRITICAL 

BEARINGS 

RIVET JOINTS 

ADAPTERS 

COUPLINGS 

SHAFT SECTIONS 

HANGERS OR 'ft 
SUPPORTS 

DAMPERS Y/y/y///y///y//yyz/y//y///'//'// 
■<- 

TOTAL WEIGHT 

TOTAL COST 

I—i—i—i—r—i—i—i—i—\—i 
0  10  20  30 40 50 60  70 80 90 100 

PERCENT 

FIGURE   2.     COMPARISONS   (PARTS,   COST,   WEIGHT) 



A separate area of study developed a specification and a pre- 
liminary design for a supercritical speed shaft damper systerr.. 
one suitable for the environmental conditions encountered in 
actual aircraft service. A final area of study included a 
theoretical approach and a tabulated or empirical approach to 
shaft balance.  Observation of a full-size, damped, super- 
critical shaft system checked the validity of developed design 
criteria and dc termined the relation of model shaft results 
with full-size shaft performance. 

ANALYSIS OF PROBLEM 

Supercritical Definition 

For this report, a supercritical or hypercritical shaft is 
defined as a shaft operating above the first critical speeds 
(lateral bending resonant frequency).  Functional operation of 
a supercritical shaft is explained by the vibration theory of 
resonance given in Linear System Operation. 

Linear System Operation - Resonance concepts are reviewed in 
reference to a single-degree-of-freedom, spring-mass damper 
system.  The response of an undamped spring-mass system when 
excited by a sinusoidal motion of the support is represented 
by the differential equation 

m x + K (X-X!) = 0 

mx + KX = KX-L (1) 

where m = mass (lb sec /inch) 

K = spring stiffness (lb/inch) 

X = motion of the mass 

Xj^ = magiiitude of the support motion 

The solution to the differential equation, the relative response 
as a function of excitation frequency, is shown in Figure 3. 
At very slow speeds, as at A shown in Figure 3, the forcing 
function P moves slowly and the mass follows with no extension 
of the spring.  At B the motion of the top is very rapid; 
therefore, the mass cannot follow and stands still in space. 
Then the relative motion is equal to the motion of the top 
yo/ao=1'  At point C there is resonance, so the extensions of 



7 

6 

O   4 
(0 

2 

1 

0 

c 
JL ib   J 

d2? 
f 

1 

] \ 

/ 

1    7 

V 

A 

i      rw      i 

/ 

/ 
— 

N 
^ 

— — 
B 

— 

^Jn 

FIGURE   3.     AMPLITUDE  VS  CRITICAL FREQUENCY RATIO. 



the spring become, theoretically, infinitely large in an 
undamped system and result in failure.  Resonance of a system 
is often determined by noting the frequency at which the phase 
shift reaches 90 degrees. 

Rigid Shaft Operation - When one relates the linear system to a 
rotating shaft, first, there is the mass or rigid body of the 
shaft; second, there are the spring supports to structure; 
third, part of the linear system is a forcing function which, 
in this case, is an unbalance in the rigid shaft; and fourth, 
the damping, which is inherent or which is added to the system, 
controls the vibrations at resonance. 

Phase shifts can be readily understood by the graphical illus- 
tration of the system used in the balancing machine. 

When a shaft rotates slowly, the unbalance will force the shaft 
to move against the spring support in line with the unbalance. 
A piece of chalk will mark the heavy side as shown in Figure 
4(A).  As the shaft's speed is increased, the deflection will 
lag behind the unbalance according to the phase shift. 
Directly at critical speed, the chalk will mark the shaft 90 
degrees behind the unbalance.  See Figure 4(B).  As speed is 
increased beyond critical, the deflection lags still further 
until it is 180 degrees behind the unbalance and the shaft is 
rotating about its mass center.  At this point the chalk will 
mark the light side of the shaft, or the side opposite the 
unbalance.  See Figure 4(C). 

Flexible Shaft Operation - To develop the classical concept of 
a flexible shaft, consider a weightless shaft of uniform cross 
section with an unbalance at the center running, at an angular 
speed, between two bearings.  See Figure 5. 

If the undeflected shaft is rotating about the centerline, 
there would be a rotating centrifugal force M^2e acting on the 
shaft.  As for an elastic deflection of the shaft (r), an 
additional centrifugal force Mu2r acts on the shaft.  Balancing 
the centrifugal force, the elastic restoring force maintains 
the equilibrium of the rotating mass as illustrated in section 
AA of Figure 5. 

x, y = fixed axis system 

a),   = rotational speed 

8 
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r       = elastic deflection 

e       = weight offset   from shaft geometric  center 

K       = shaft  stiffness  at  the unbalance   location 

M       = unbalance weight 

Summing the forces acting on mass M, 

Kr     = Mcü2e + Mu)2r. (2) 

Solving for the elastic deflection, 

(K-Mü)2)r  = Ma)2e (3) 

r  =  Uli— e    . 
K  _ 
M ÜÜ 

2 

1/2 Since   (K/M)   /     is  the natural frequency   (a)n)   of the shaft- 
mass  system, 

r  =     ("A1")2   e (4) 
1 

The above equation can be extended to a uniform shaft by con- 
sidering (e) as the effective modal unbalance. It is noted 
that this formula coincides with that of a simple spring-mass 
system excited by a force proportional to the square of the 
frequency. Relative positions of the geometric shaft center, 
effective modal center of gravity, and the centerline between 
bearings are illustrated in Figure 6. 

Shown in the diagram for slow rotations (w = 0), the radius of 
whirl is practically zero.  At the rotating speed equal to 
the shaft natural frequency the radius becomes infinite; and 
at frequencies above natural, the shaft rotates about the 
effective center of gravity.  The rotational speed at which 
the radius of whirl becomes infinite is known as the critical 
speed, and this speed is the same as the non-rotating natural 
frequency of the shaft in lateral bending.  In practice, a 
critical speed exists for each of the natural modes, and excita- 
tion results from the modal unbalance of the shaft distributed 
weight. 

11 



CENTER OF GRAVITY 

CENTERLINE BETWEEN 
BEARING 

FIGURE 6.  SHAFT CENTERLINE DEFLECTION. 

12 



■ ;' ■, M--   '■ f. 
■ ■** <■■■■' 

FIGURE   7.     DEMONSTRATION MODEL. 

13 



Flexible Shaft Demonstration -  The photographs  in Figure  7 
show a  supercritical  speed shaft demonstration nodel   in opera- 
tion.     It  is driven by a small,   variable-speed electric motor. 
Amplitudes are controlled by a model multiple plate  viscous 
shear damper.     The damper is  located  at  the extreme end of 
the  shaft  in one  case,   and  in the other  case the damper   is 
located at 8 or  10 percent of the  shaft   length. 

The classical  loops can be clearly  seen on the  shaft  as   it 
rotates at  the  5th  and 6th critical  speeds,   respectively. 

The natural  sag  is  apparent and does  not   influence  the  forma- 
tion of whirling modes.     Several of  these demonstration  shafts 
have been made  to  fail.     It was  interesting to note  that  each 
bending  failure occurred at the peak  of each bend or  antinode, 
and  that  the plane was  the same  for  all  loops.     During  testing, 
as  the bending  failure occurred,   power of the demonstration 
motor was  insufficient  for the  increased wind resistance.     No 
further damage resulted.     See Figure  8. 

Problem Statement - At  the inception of  the program,   the pri- 
mary task was to determine whether previously developed  super- 
critical design techniques could be  applied to the  full  size 
helicopter drive  shaft.    The physical characteristics and 
operational speeds of the full-scale  shaft were predetermined 
by selection of the vehicle.     The task was considered necessary 
because the available  information had been developed on models 
whose maximum length was a fraction of that required  for  the 
proposed application.     Therefore,   confirmation of the design 
approaches and scaling effects was essential to the  full-size 
utilization of the previous efforts. 

It was found during  the program that  the  sub-scale design 
techniques available did not completely predict the dynamic 
behavior of the full-size shaft.     The  full-size test  specimen 
could not attain  the  required maximum  rpm because of excessive 
amplitudes encountered at the higher  criticals.     This problem 
was  solved by development of a method  for dynamic balancing. 
Maximum rpm was then met and exceeded. 

The  secondary task defined at program  inception was  to deter- 
mine  the design of a supercritical  shaft damper  suitable  for 
helicopter use.     It appeared that environmental conditions, 
weight,   and reliability might present   such problems as  to make 
the damper a  restrictive  factor to practical usage.     After 
design study,   a damper has been devised with characteristics 

14 
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which appear to be well suited to operational helicopter super- 
critical shafting. Expansion of the solution will be discussed 
under DESIGN. 

Problem Solution 

The selection of the initial design parameters was assisted 
by the previously developed techniques.* These determined 
the four damper parameters, namely, location, coefficient, mass, 
and spring rate, by using shaft characteristics of length, 
stiffness and weight.  Unbalance was not initially included in 
the shaft characteristics considered.  Past work has averaged 
calculated damper parameters for the critical speeds of inter- 
est.  For the most part, this approach has resulted in dynamic 
performance, as measured by whirl amplitude that has been 
acceptable.  In this investigation, it became apparent after 
running the full-size shaft that the dynamic behavior was not 
predictable from the model tests and that a further solution 
would be necessary.  The alternatives that presented them- 
selves were to increase the damping effectiveness or to reduce 
the forcing function as it was revealed in shaft unbalance. 
The first alternative constituted a major design change, in 
that the most feasible approach would increase the number of 
dampers to two or more.  The second alternative, which would 
not increase shaft weight or complexity, was therefore imple- 
mented by an attempt to balance the shaft.  This was successful, 
and the shaft after balancing was run to speeds in excess of 
the maximum required rpm. 

As a result of the marked improvement provided by balancing, 
a further study to refine and systematize the procedure was 
indicated if other large shafts were to be built and operated. 

Two methods of shaft balancing were investigated.  The first, 
an experimental method, directed that selected balance weights 
be added at stations along the shaft lengths.  The balance 
weights would correct the mode under consideration but would 
not affect the other modes.  Selecting a balancing station 
which would influence one mode without affecting the other 
modes became more and more difficult as the number of critical 
speeds was increased. 

♦Electrical Transmission Line Analogy (Appendix I) and 
Design Manual Solution (Appendix II). 
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The second method was an analytical balancing approach in 
which the deflections and phase of each mode were used as 
inputs to determine modal unbalance of the shaft.  A mathe- 
matical balance in all modes can be accomplished by the addi- 
tion of balance weights of computed magnitude and phase at 
predetermined shaft stations.  Theoretically, any number of 
critical speeds could be handled by the analytical balancing 
method.  However, the analytical method proved to have limita- 
tions, as discussed later. 

Experimental Procedure Development - The experimental balancing 
procedure for mode-by-mode balancing has been formalized for 
balancing of the third, fourth, and fifth critical speeds of 
the full-size test specimen shaft.  The balancing planes are 
located at three shaft stations.  The stations are selected so 
that balance weights added for a specific critical will have a 
minimum effect on the other two criticals of interest.  Each 
mode is successively balanced by the use of two charts; these 
indicate the correct weights and phase which correspond to the 
amplitude and phase of shaft distortion measured at Station 
300.  Station 300 is located away from the nodes of all criti- 
cal speeds, and therefore observed deflections at this station 
can be related to a true indication of shaft performance over 
the entire speed range without shifting the amplitude measuring 
device.  The charts have been prepared to provide the balance 
weights at the correct stations from the deflections observed, 
even though Station 300 will not necessarily show maximum de- 
flections.  This method has been used to balance the CH-47A 
shaft in several different degrees of initial unbalance, and 
all results indicate that the procedure will be practical and 
reliable for production balancing. 

Analytical Procedure Development - The balancing of a super- 
critical shaft by the experimental methods used in the past is 
a difficult process.  It is expected that such balancing would 
become more and more delicate as additional whirling modes are 
involved.  Therefore, it is desirable to develop an analytical 
tool which can serve as a guide for interpreting experimental 
data and form the basis for a systematic balancing procedure. 
This is the objective of the theoretical work undertaken on 
this project. 

The theoretical problem involved here consists of two distinct 
but related parts; namely, the interpretation of experimental 
data to determine the unbalance present, and the development of 
a method to calculate balancing corrections.  The methods 
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developed uring this program to solve these problems are 
briefly deiicrlived below, and the complete theoretical develop- 
ments are p --sented in Appendix IV of this report. 

For a rotating system with distributed mass, such as a shaft, 
it is necessary to consider the unbalance as a set of two un- 
known functions; namely, the distance and the angular position 
of the mass center.  Thus we must, by proper interpretation of 
experimental data, determine these two unknown functions.  In 
the development of Appendix IV, the equations of motion of a 
whirling and vibrating shaft are derived in any arbitrary 
coordinate system, including the effect of viscous damping as 
well as an arbitrary distribution of mass unbalance and initial 
deflection.  These equations are then specialized to the case 
of a steady, whirling motion referred to a set of axes and 
rotating with the shaft. The choice of these axes was dictated 
by the experimental technique adopted by Batt lie Memorial In- 
stitute, which provided all measurements with respect to such 
axes. The resulting differential equation.* of motion are solved 
in the form of a series in terms of  whirling modes" (which are 
identical to the bending modes) of the shaft.  The solution 
provides this amplitude of the whirling motion in each mode in 
terms of the amplitude of the initial deflection and unbalance 
in the corresponding mode.  It is then shown that the solution 
can be ui.ed to determine the unbalance from experimental mea- 
surements of whirling deflection at any point of the shaft (not 
a node) .  Measurements are taken at as many rotational speeds 
as the number of modes desired in the solution for unbalance. 
Thus, if the shaft is designed to operate through five critical 
speeds, the unbalance in at least the first five modes should 
be determined and eliminated.  These measurements should be 
taken at five speeds of the two components of the whirling de- 
flection.  These measurements should, if possible, be taken at 
speeds covering the entire desired range, as this will improve 
the accuracy.  This is not necessarily at critical speeds.  One 
interesting feature of the solution obtained is that it demon- 
strates a fact little understood previously; namely, that at a 
given critical speed, the whirling shape is not necessarily the 
pure mode corresponding to that speed, but is in fact a contri- 
bution of many whirling modes, the relative amounts of which 
are determined by the modal content of the unbalance.  This 
coupling is precisely the feature that tends to limit the ex- 
perimental balancing method.  It should be noted that previous 
analytical work in this area has been limited to the determina- 
tion of whirling mode shapes and critical speeds.  Previous 
methods did not provide the relationship between unbalance, 
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whirling amplitude and angle, which is essential to a proper 
interpretation of experimental data. 

The second part of the analytical work is concerned with the 
analytical determination of suitable balance corrections.  It 
is shown that, if it is desired to eliminate the unbalance in 
(n) of the whirling modes, this can always be accomplished by 
a system of (n) weights which can be located arbitrarily (but 
not all at nodes).  One fairly effective system is to locate 
weights at one of the antinodes of each mode of interest; how- 
ever, this solution is not necessarily an optimum one.  It is 
often possible to balance a shaft to an acceptable degree by 
using a number (k) of masses smaller than the number of modes 
of interest (k < n).  The development of a suitable method to 
optimize the number and location of such weights should be an 
oojective of future work in this area. 

The calculations required to determine unbalance from experi- 
mental data and to select suitable balancing corrections are 
rather complex to carry out by hand.  It was therefore neces- 
sary, during the course of the present program, to carry out 
only approximate solutions which were based on the use of 
idealized rather than actual mode shapes.  The results have 
been somewhat mixed, in that successful balancing of the test 
shaft through the fifth critical speed was accomplished in one 
case, but an attempt to balance five modes simultaneously was 
not demonstrated in a satisfactory manner. 

It would te desirable to develop a computer program to carry 
out the necessary balancing calculations exactly and rapidly. 
This would allow a closer integration of experimental and theo- 
retical work.  Thus, experimental rJata presented as whirling 
amplitudes would be fed into the computer, which would calcu- 
late suitable balance corrections based upon actual rather 
than idealized shaft characteristics. The corrections would 
then be available immediately so that their effect could be 
verified in the laboratory.  This seems to be the form that a 
future balancing procedure suitable for production operation of 
supercritical shafts should take. 

DESIGN 

Design Data Supplied 

The rotor interconnect shaft of the CH-47A medium transport 
helicopter was chosen as the subject of investigation.  See 
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Figure 9 ie reasons for the selection of this aircraft were: 

1. The present subcritical system is in existence for 
comparison of performance, cost analysis, weight, 
reliability, etc. 

2. » .i«<mor stration vehicle is available for complete 
•vaiuijicn of final design. 

3. This shaft is the longest, and has the highest 
continuous horsepower capacity, of any high-speed 
shaft in the military aircraft inventory. 

Design requirements based on an existing subcritical system 
allow evaluation of a supercritical speed system without major 
and costly changes in the drive train.  In a new supercritical 
design it may prove to be advantageous to run the shafting at 
much higher speed, without the intermediate gear reduction 
from engine speed.  Supercritical operation can be achieved by 
running at higher speeds or by removing some of the supports. 
Since shaft speed is dictated by the present transmission, 
removing the supports was the approach followed.  See Figure 
10. 

The design and test program was based on the following require- 
ments of the system as it exists in the helicopter and on the 
environmental requirements expected by the aircraft in service. 

Shaft length between gearboxes   338.8 inches 

Shaft outside diameter (maximum) ....  4.50 inches 

Operating speed range 

Ground idle minimum 2900 rpm 
maximum 3240 rpm 

Normal flight range   minimum 7050 rpm 
maximum 7 555 rpm 

Extended flight range minimum 6600 rpm 
maximum 8270 rpm 

Normal operational torque   15,000 inch-pounds 
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Design fatigue torque   26,500 inch-pounds ± 15% 

Ultimate torque   60,000 inch-pounds 

Relative motions Angular ± OM' 
from fuselage deflections 
at limit load Length -0.216 inch 

Angular tolerances on blade phasing . . .  ±1° at rotor 

Starting time (approximate) 

0 to 3200 (ground idle) 7 seconds 

3200 to design speed 4 seconds 

g Loadings 

Flight +2.67 

Flight -0.50 

Landing +2.80 

Crash .... 8g all directions, acting separately 

Data Derived 

Below are listed the design requirements of the supercritical 
test shait: 

1. Torque capacity to duplicate the operational shaft. 

2. Safe speed range to meet or exceed the operational 
requirements. 

3. Physical dimensions to be compatible with the 
CH-47 helicopter. 

4. Environmental temperature range to be restricted 
to laboratory room temperatures. 

5. Number of dampers to be a minimum. 
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The  torque capacity requirement v \s met by designing  the   super- 
critical tube  to  the  same torsionc 1  stress  criteria  as  the 
present subcritical  tube.     Restrictions  on outside diameter 
resulted in identical tube diameter and wall thickness.     Length 
between transmissions  also duplicates  the CH-47  shaft  system 
length.     The remaining data to be derived  for design of  the 
supercritical  shaft were the damper variables,  damper positions, 
and accurate critical  speeds. 

These data were obtained by applying  the  previously developed 
electrical transmission  line analogy   (see Appendix  I)   or by 
using the charts  and graphs given  in the Design Manual   (Refer- 
ence 5).     Model  tests were necessary to   supplement these design 
approaches and to verify the results prior  to actual design of 
the  full-size  shaft.     Table I  shows  results obtained  from  three 
methods of solving  the design problem. 

TABLE  I 
DESIGN APPROACH 

Design Inputs 

Methods Comparison 
Full 
Size 

Electrical 
Analogy 

Design 
Manual 

Model 
Tests 

Damper 
Coefficient 

3Z  to 4Z 3Z 6Z  to 1ÜZ 3Z  optimum 

Damper Mass Maximum 
h shaft wt. 

Maximum 
1/3  shaft 

wt. 

Maximum 
1/3  shaft 

wt. 

Maximum 
1/3   shaft 

wt. 

Damper Spring 
Rate 

Estimated 
minimum 

Estimated 
minimum Minimum Minimum 

Damper Loca- 
tion   (Percent 
of Shaft Length) 

1.1% 5% 9% 
optimum 

9% 

Damper Type Viscous  shear  type used throughout 

Shaft Amplitude Not determined Measured but not 
to scale 

Critical Speeds 
(rpm) 

Calculated Similar 
to calcu- 
lated 

Measured 
but not com- 
parable to 
calculated 

Measured 
and compar- 
able  to 
model 

Z =  Impedance   (See Reference 4.) 
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Table  I exhibit J  the fact that most damper characteristics 
from the electrical analogy or   from the Design Manual   (refer 
to Appendix  I or   II)   are  similar.     Damper  location  is  an ex- 
ception  in which  the electrical  theory positions  the  damper 
very close  to  the  end of the  shaft.     This damper position may 
be the optimum  for  the fifth critical,  but  it  is doubtful  if 
the damper would  suppress the  amplitudes of the  first  critical 
within acceptable  limits to allow  the  shaft to  ever  run  at 
that  speed.     Therefore,  model  test   results were used  to 
establish darnpar   location on  the  full-size  shaft.     See  Figure 
11. 

Damper  Investigation 

Design Objectives -  In considering   the design of a damper 
suitable  for  an  aircraft  installation,   the following  objectives 
were set: 

1. The characteristics of the damper must be matched 
with the  requirements of  the  shaft under all 
conditions of speed expected  in actual operation. 

2. The damper  should have the capability of fail-safe 
operation. 

3. It  should operate with or without engine power 
available.     It should not  depend on any other 
aircraft   system   (electrical,   hydraulic,   pneumatic) 
for  its  safe and continued performance. 

4. It must be able to operate under environmental 
conditions  expected by the  aircraft.     It must 
operate  from -650F to +1800F ambient temperature 
extremes. 

Design Comparison - A common problem of all damper  types   is 
to utilize  the whirling motion of  the  shaft to actuate  the 
elements of the damper and thereby dissipate  the unwanted 
energy.     This  is  a  fairly simple problem at  low speeds where 
the amplitudes  are  relatively high with  low inertia  forces. 
As high  speeds  are  approached,   the  amplitudes are reduced  to 
very small values,   and loss-motion between the shaft  and  the 
damper elements,   together with  the high  inertia  loads,   may 
prevent the damper's performing in a  satisfactory manner. 

This problem becomes more severe when  links or fittings  are 
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added between the whirling  shaft  and the energy-absorbing  sec- 
tion of the damper body. 

Design types  considered were   (see Table  II): 

1. Viscous shear 

2. Orifice 

3. Concentric ring   (squeeze  film) 

4. Immersion body   (heart pump) 

TABLE  II 
COMPARISON OF DAMPER  CHARACTERISTICS 

Type Figure 

Moving 
Weight 
(pounds) 

(1) 

Damper 
Weight 
(pounds) 

(2) 

Temper- 
ature 
Correc- 
tion 

Comment 

Immersion 
Body "A" 

Immersion 
Body "B" 

Orifice 

Viscous 
Shear 

15 

16 

13 

12 

9.85 

11.50 

11.35 

13.00 

1.56 

5.20 

4.47 

10.04 

No 

Yes 

Yes 

Yes 

Laboratory test 
would require 
temperature 
correction for 
service 

Not tested; 
preliminary 
design only 

Not tested; 
preliminary 
design only 

Similar to test 
damper, but in- 
cludes temper- 
ature correc- 
tion 

(1) Moving weight includes damper parts moving with 
shaft and shaft adapter assembly (9.10 pounds 
constant). 

(2) Damper weight includes all damper parts except 
bearing and supports to airframe. Weight includes oil. 
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Viscous  Shear Damper   (Ficrure   12 )   -  The viscous   shear deunper 
derives   its damping characteristics  from the  resistance 
offered by shear of  a liquid  film between two surfaces  in close 
proximity.     The resistance depends on the viscosity of the 
liquid and the  relative velocity or shear rate.     The viscous 
shear damper coefficient has  a   linear response  to velocity. 
It has  the disadvantage of  also being sensitive  to viscosity 
changes due to temperature variations. 

One of  the moving surfaces of  the viscous  shear  damper  is 
attached directly to  the whirling shaft through  a bearing from 
which  it  receives its orbiting motion.     There  is  a minimum of 
loss-motion  in this arrangement. 

Orifice Damper   (Figure   13 )   - The orifice damper derives  its 
damping characteristics  from the  resistance offered by  fluid 
passing  through a sharp-edged orifice.     The  resistance  is 
proportional  to the velocity squared.     The damping coefficient 
is  insensitive to temperature changes when the   flow through 
the orifice  is  in the turbulent  region. 

The orifice damper  is basically a piston mounted directly to 
the whirling shaft through  a bearing from which   it  receives 
a  translating motion.     To prevent binding, it   is  attached tc 
the bearing housing wifH  a pin or ball joint which removes out- 
of-plane motion. 

The axial motion moves the piston  relative to the cylinder, 
mounted with  another pin or ball  joint to the structure,   and 
forces damper   fluid through  the  sharp-edged orifice. 

This design has a number of  joints which may have  sufficient 
clearance  to  reduce the effectiveness of the deunper, especially 
at the higher  frecruencies. 

Concentric Ring Damper   (Figure   14)   - The concentric  ring 
works  on  the  principle of  squeeze-film action.     It derives 
its characteristics  from the  resistance offered  the approach 
of  two surfaces when separcted by a  film of viscous   fluid.    A 
further  characteristic of  this   type  is  the  inertia  effect  of 
each concentric ring.    At the higher  frequencies, the  greater 
mass  of  the  larger rings helps  to react the  load  and,  by tend- 
ing to stand  still  in space, changes the damping  action.    A 
properly designed  aqueeze-film damper would  match the action 
of  the ring masses and  the remaining damping coefficient so that 
it would  exactly match the  requirements of the   system.     This 
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tuned damper would be considerably heavier than the one 
reported (see Reference 8). Cavitation in the film is a 
problem, and fluid under pressure must be supplied for satis- 
factory operation. 

The inner ring of this system is attached directly to the 
whirling shaft through a bearing.  The bearing transmits the 
orbiting action of the whirling shaft to the ring without 
causing rotation of the ring.  A number of rings make up the 
damper and together provide the desired motion and daunping 
coefficient.  The rings must be keyed together to prevent 
individual whirling or rotation.  The final external ring 
makes up the housing and is attached to structure. 

There is a minimum of loss-motion in this arrangement. 

Immersion Body (Ficrures 15 and 16 ) - The immersion body 
damper consists of a pump (heart pump principle) .  It derives 
its damping characteristics by pumping the fluid around the 
periphery as the shaft orbits.  The characteristics are 
determined by the area of the fluid chamber, the type of fluid 
used and the frequency. 

This damper is attached directly to the whirling shaft through 
a bearing from which it receives its orbiting motion.  The 
bearing housing flexes the elastomeric fluid chamber in the 
same orbiting motion, forcing the fluid around the chamber in 
proportion to the amplitude and frequency. 

Restrictions are sometimes added in such a manner that the 
area of the restriction will change with variations in the 
temperature, thus producing a more constant damping action. 

There is a minimum of loss-motion in this arrangement. 

Early tests indicate a nonlinear response of this type of 
damper.  The change in response was most pronounced in 
the higher frequency range (above 80 cps). 

Damping Comparison - The relationship between the theoretical 
damping necessary with a given amplitude and that obtained 
using various types of dampers is shown in Figure 17. 

The viscous shear damper with its linear characteristics 
follows very closely the requirements of the shaft.  The ori- 
fice damper matches the shaft requirements at only two points. 
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The characteristics deviate rapidly at any substantial  speed 
above or below these and may seriously limit the number of 
critical  speeds through which  this damper can control vibra- 
tion.    A pure friction damper was not seriously considered 
because oi:  several factors:   first,  because of the obvious 
deviation  from the shaft  requirements as shown by the chart; 
second,   because of undesirable characteristics displayed 
by some model  shafts when friction  inadvertently was present 
in the viscous  shear plate damper  in  the laboratory. 

It can be  seen  that the concentric  ring  squeeze-film damper 
most closely  follows the  requirements of the supercritical 
speed  shaft. 

The  immersion body dampers  show a  fairly good response  in the 
lower frequency range,   with  a  sharp drop in the higher  range. 

These curves  show general  trends   for  the various  types of 
dampers  as  they exist today,   and all can possibly be modified 
for  improvement  to better match  the  requirements of a  specific 
design. 

Selected Design -  Any of the damper  types discussed above 
could be developed  to meet  the  requirements of a  supercritical 
speed  shaft under  the environmental conditions expected  in an 
aircraft  installation.     Some of the dampers have been built 
and  tested,   while others represent design concept only. 

The viscous  shear damper selected  for preliminary design was 
a variation of  the damper used  so  successfully  in  the  labora- 
tory.     This design  should therefore enhance the probability 
of immediate  successful operation.     It was felt that minimum 
development would be required to  provide a  solution  to the 
damping  coefficient -  temperature variation problem.     Metal- 
to-metal mounting of the  shear  plates provides an efficient 
path to  transfer  the heat,   and  a   large metal housing will 
provide  adequate  area to dissipate heat without  additional 
fans or  coolers. 

Damper Requirements: 

Damping coefficient minimum 6  lb/sec/in. 
maximum 40  lb/sec/in. 

Spring  rate    minimum 5  lb/in. 
maximum 1000  lb/in. 

37 



Allowable damper mass maximum 

Shaft speed 

Temperature ranges minimum 
maximum 

20  lb 

0   to 8900  rpm 

-650F 
+180oF 

The calculated design damper   shear  area  required  is: 

Viscosity Viscosity Required Shear Area 
(centistokes) (revns) (square  inches) 

100 1.4 x  10"5 21400.0 
1,000 1.4 x  10"4 2140.0 

10,000 1.4 x   lO-3 214.0 
100,000 1.4 x  lO-2 21.4 

The above viscosities and areas are required at  the upper 
temperature  limit expected  in service.    Maximum ambient temp- 
erature   is  180 degrees Fahrenheit. 

A damper with an area of about  200  square  inches  is not un- 
reasonable  in the configuration    being considered. 

Therefore,   the fluid to use would have an apparent viscosity 
of 10,000 centistokes at 180 degrees Fahrenheit.     The 30,000- 
centistoke  silicone fluid  is near this requirement at  180 
degrees Fahrenheit.    At -65 degrees Fahrenheit, this same 
fluid has a viscosity of 200,000 centistokes,   a change 
temperature of  20 to  1.    This change from maximum to mi.      an. 
temperature  indicates that  if adequate damping  is provided 
at the high-speed range under hot conditions,   the  system will 
be over-damped when it is cold.     The system will be ovar- 
damped  still further when compared with the requirements at 
low speed in the cold condition. 

To  reduce  the change in damping coefficient with  temperature 
variations as much as possible,   it is desirable  to design 
using a  fluid  that has minimum percentage of change with the 
temperature extremes encountered. 

The following  shows the variations and the ratios of a 
representative group of silicone  fluids. 
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Viscosity at 180oF   Viscosity at -650F 
Fluid (centistokes)        (centistokes)   Ratio 

100,000 30,000 700,000 23/1 

30,000 10,000 200,000 20/1 

10,000 3,000 90,000 30/1 

1,000 350 9,000 26/1 

100 37 1,100 30/1 

The ratios shown are indicative of the change in damping coeffi- 
cient.  They are beyond the range of coefficients investigated 
in the laboratory test program.  Tims, a compensating device 
will be required for satisfactory operation under the temper- 
ature extremes expected.  It is interesting to note that 
transmission oil (MIL-L-7808) which has a low viscosity would 
require 7500 square inches of plate arer and a 0.001-inch gap 
to provide the required damping coefficient at 70 degrees 
Fahrenheit.  The ratio of viscosity change is over 1000 to 1 
in the range of -6 5 to +180 degrees Fahrenheit.  Other lubri- 
cating oils display a far higher rzi'cio. 

Test results have indicated that a permissible variation in 
the damping coefficient exists. Therefore, the temperature 
compensation may not need to accommodate the full viscosity 
range. 

The conclusion is that for a damper to operate in the normal 
aircraft environment, a temperature-compensated unit 
filled with a silicone viscous fluid should be used.  The 
compensation must cover a range of 30 to 1 to provide a 
constant damping coefficient.  With a constant plate area, 
this implies a change of this order in gap width. 

A description of the suggested damper design is shown in 
Figure 12 .  The damper is attached to the shaft by means of 
the bearing in the center.  The bearing is grease-lubricated 
in a manner similar to the bearings of the existing drive 
system supports.  The outside housing of the bearing provides 
the support around its periphery for the inner leaves of the 
viscous shear elements.  These elements intermesh with the 
outer shear elements much in the same manner as the fingers 
of the left and right hands intermesh when the hands are 
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folded or clasped. 

Clearance between the intermeshing elements  is provided for 
the viscous  fluid in an axial direction.    Clearance is provided 
for motion of the elements relative to each other  in a  radial 
or lateral direction.    The outer shear elements are attached 
around their outside diameters  to a housing which contains 
the fittings  for attaching the damper assembly to the aircraft 
structure. 

The inner and outer housings are  free to move relative  to each 
other.     The damper fluid  is held  in contact with the shear 
plates by flexible diaphragms on each  side of the plates which 
make a fluid-tight joint where  they contact the inner and 
outer housings.     The diaphragms  serve three purposes:   they 
provide a  liquid-tight,   flexible container  for the damper 
fluid, yet allow   free damper action;     they provide a spring 
rate to the assembly which tends  to center the damper elements; 
they provide  the  reaction torque necessary to overcome 
friction in the bearing. 

The fittings on the housing are provided with self-aligning 
bearings attached to links.     The  links secure the damper to 
the structure,   but at the  same time will allow it  to shift 
in an axial direction as well as provide it with angular 
misalignment  features in two planes.     It is  free to  float in 
an axial direction;   it is  free  to align itself with  the  shaft 
in an angular direction; but it is not  free to move  in either the 
vertical or  the horizontal direction.       It  is also held  from 
rotating.     This  freedom will allow it  to function properly 
and to align  itself on the shaft. 

The effect of viscosity changes with variations of  temperature, 
either environmental or due to operational heat,   is compensated 
for by having the shear elements charge their relative positions, 
thus    varying the gap between the working surfaces.     The gap 
between the  shear elements as  set up by the design  is   from 
the calculations with the temperature of the damper fluid at 
70 degrees Fahrenheit.     If this  temperature goes up or down, 
the gap will change by the action of the thermometal,   shear- 
element material.    The rate of change is calculated to agree 
with the change  in viscosity in such a way as to maintain 
a constant damper coefficient. 
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The design objectives are fulfilled as follows: 

1. The viscous shear damper matches the requirements 
of the shaft. 

2. Failsafe operation in the event of a sealing ring 
or housing leak is  inherent due to the heavy fluid 
and labyrinth arrangement of the plates.     For 
example,  the laboratory damper operates without 
seals,  depending only upon occasional oiling.    The 
fluid film remains upon the plates.     Should testing 
prove that an additional barrier is required,  a 
vertical wall through the center of the damper is 
contemplated* 

3. The damper is independent of the aircraft systems 
for  lubrication. 

4. Temperatur^ compensation will accommodate the full 
range of environmental conditions. 

Damper Design Equations 

The following relationships were used in the preliminary 
design of the viscous shear damper: 

1. Shear velocity «   ui6    (inches per second) (5) 

where u = angular velocity of critical speed 
of interest   (radians per second) 

6 = radius of deflection at that speed 
(inches) 

2, Gap width  (minimum)   = Shear Velocity (6) 
Limit Shear Rate 

where Limit Shear Rate is defined by the maximum 
acceptable drop in apparent viscosity of the 
damping fluid 
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3.     Shear area ■ Ch (square inches) (7) 
u 

where        C ■ required daunping coefficient   (lb-sec/in) 
h « gap width   (inches) 
u « viscosity   (reyns)  at the temperature of 

interest 

DESCRIPTION OF  TEST ITEMS 

Model Shaft 

The model shaft was made dynamically similar to the full-size 
shaft system as determined by the application of the modeling 
equations of Reference 4 . The model was used to determine 
optimum damping coefficient and to establish the best damper 
location for successful full-scale operation.  The character- 
istics of the model shaft are given below. Wall thickness 
measurements are provided in Table ill. 

Model Shaft Characteristics 

Length 135.60 inches 

Outside diameter 1.50 inches 

Inside diameter 1.37 inches 

Material Aluminum alloy tube 

Weight 3.86 pounds 

The scaling factors of the model shaft were such that the 
calculated critical speeds occurred at twice the revolution 
per minute of the calculated critical speeds for the full- 
scale shaft. 

The model damper was a single plate viscous suear type, similar, 
except for size, to that used in the full-~cale tests.  The 
model damper moving weight was varied from 1.2 to 1.5 pounds, 
corresponding to 18 to 22 pounds of damper weight on the full- 
scale shaft. 
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TABLE III 
MODEL SHAFT WALL THICKNESS MEASUREMENTS 

1. 50 DIAMETER X .064 WALL x   135 .6 INCHES   LENGTH 

0-degree 90 180 270 
Station Index degrees dearees degrees 

A .064 .064 .0635 .064 
B .063 .0635 .064 .064 
C .064 .0635 .064 .064 
D .064 .064 .064 .064 
E .064 .064 .064 .0645 
F .064 .0635 .064 .064 
G .064 .064 .0635 .064 
H .064 .064 .064 .064 
I .064 .064 .064 .064 
J .064 .064 .064 .0645 
K .064 .064 .0635 .064 
L .0635 .0635 .064 .064 

AVERAGE 1 WALL THICKNESS 

.063875 .063833 .063875 .064033 

The model damper was designed to be mounted on the model shaft 
tube without requiring a reduced diameter section. Thus, 
damper position was infinitely variable. 

Shaft end connections were designed to simulate the bending 
stiffness of the flexible metal disc couplings of the full- 
scale shaft, based upon the same ratio of K L/EI, where K 
equals the moment stiffness and L is the total shaft length. 
The required, calculated section was 0.160 inch in diameter 
for a length of 0.50 inch.  Final model tests were made 
with this end condition, while the initial tests were made 
with a somewhat stiffer end connection having a 0.250-inch 
diameter.  Test results provide a comparison of the two 
sections tested. 

Full-Size Shaft 

The full-size shaft was designed to the physical dimensions 
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dictated by data supplied and by model tests, 

Full-Size-Shaft Characteristics: 

Length 

Outside diameter 

Inside diameter 

Material 

Weight 

338.50 inches 

4.50 inches 

4.26 incnes 

Aluminum alloy tube 

56.0 pounds 

Description of Shaft - The full-size test specimen shaft used 
a standard extruded tube as it came from the mill. No 
attempt was made to straighten or initially to balance the 
test specimen. Maximum runout was ± 0.165 inch in the 
338.8-inch length of tube, less than half the standard 
tolerance of ± 0.010 inch per foot of length.  Figure 18 
shows shaft stations referred to throughout the report and 
rotations. Figure 19 shows physical characteristics of the 
shaft. 

The full-scale test shaft is supported at each end through 
a flexible metal disk coupling.  This coupling introduces a 
low moment restraint and thus provides end conditions that 
approach an ideal "simply supported" configuration. The full- 
scale shaft is uniform in weight along its length except at 30 
inches from one end, which is the damper location. 

The joint at the damper must be relatively rigid. The more 
rigid the joint, the more effective will the damper be in 
controlling the amplitude of the turning shaft. 

The original intention was to bolt the fingers of the flexible 
coupling adapters together after removing the flexible coupling 
plates and thereby use existing standard hardware for this 
point. 

Two sections of standard drive shaft tubing were bolted 
together at the adapters and tested to determine the deflection 
and bending stiffness of the assembly. 
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TABLE   IV 
SUPERCRITICAL SHAFT WALL THICKNESS  MEASUREMENTS 

|                                                           Degrees                                                             j 
Station 15 60 105 150 195 240 285 330 

4.5 .1185 .1180 .1185 .1200 .1210 .1215 .1205 .1190 
14.8 .1180 .1175 .1185 .1195 .1210 .1210 .1205 .1185 
25.2 .1180 .1175 .1185 .1190 .1195 .1205 .1190 .1185 
37.5 .1185 .1195 .1205 .1210 .1210 .1190 .1200 .1185 
49.5 .1180 .1195 .1195 .1210 .1205 .1195 .1185 . 1180 
61.5 .1170 .1180 .1185 .1200 . 1200 .1195 .1190 .1180 
73.5 .1180 .1190 „1195 .1200 .1200 .1185 .1180 .1170 
85.5 .1170 .1185 .1190 .1190 .1200 .1195 .1190 .1180 
97.5 .1180 .1190 .1190 .1205 .1205 .1195 .1190 .1180 

109.5 .1190 .1185 .1200 .1205 .1205 .1195 .1190 .1185 
121.5 .1180 .1185 .1205 .1210 .1210 .1200 .1190 .1180 
133.5 .1180 .1185 .1190 .1205 .1200 .1195 .1185 .1180 
145.5 .1180 .1190 .1180 .1200 .1195 .1200 .1190 .1185 
157.5 .1180 .1180 .1185 .1200 .1200 .1200 .1180 .1185 
169.5 .1175 .1180 .1190 .1205 .1205 .1205 .1175 .1190 
181.5 .1185 .1185 .1195 .1205 .1210 .1190 .1180 .1180 
193.5 .1185 .1195 .1200 .1205 .1220 .1205 .1195 .1200 
205.5 .1180 .117 5 .1190 .1190 .1205 .1200 .1190 .1180 
217.5 .1195 .1190 .1195 .1190 .1205 .1215 .1215 .1205 
229.5 .1180 .1175 .1180 .1180 .1195 .1205 .1195 .1185 
241.5 .1180 .1180 .118 5 „1185 .1195 .1200 .1190 .1185 
253.5 .1185 .1175 .1195 .1190 .1200 .1200 .1205 .1190 
265.5 .1185 .1175 .1190 .1185 .1190 .1195 .1185 .1185 
277.5 .1185 .118 .1185 .1185 .1195 .1195 .1190 .1185 
289.5 .1180 .118 .1190 .1195 .1200 .1190 .1185 .1180 
301.5 .1170 .1175 .1175 .1185 .1195 .1200 .1185 .1175 
313.5 .1170 .1175 .1175 .1195 .1195 .1200 .1170 .1175 
325.5 .1165 .1175 .1180 .1195 .1195 .1195 .1185 .1175 
334.5 .1180 .1185 .1195 .1190 .1205 .1210 .1185 .1180 
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It was found that the arms of the adapter» were flexible and 
that the joint was only 5 percent as stiff as the tube. 

Special adapters were then designed and made in order to 
maintain tube stiffness through the reduced diameter section 
at the damper location. 

Figure 2 0 shows the specially designed cone adapter and 
flange adapter, both joined by a circle of bolts through a 
continuous flange. Calculations and tests indicated that the 
stiffness at the joined adapters was equivalent in bending 
to the baiic tube stiffness. The measured deflection of the 
entire shaft as assembled and supported at the ends was within 
1 percent of the deflection calculated by simple beam theory. 
It was concluded that a uniform El value of 43.1 x 10° pounds 
per square inch described the full-scale test specimen. 

A problem was encountered with the splined section of the 
damper adapter.  Initially, a straight spline with cylindrical 
land at one end was found to provide an inadequate centering 
effect. When a conical land at the opposite end was added, 
unexpected performance changes during operation were eliminated. 
However, it was found that despite careful indexing, a dis- 
assembly of the shaft resulted in changes in dynamic character- 
istics. A still more positive centering effect is desirable 
for a production design shaft. 

Laboratory-Type Damper - The damper was a single-plate viscous- 
shear type having a center spherical joint. This permits damper- 
to-shaft angular alignment with a minimum radial clearance. 
See Figure 20.  The damper (Figure 21) was.designed so that 
multiple plates could be used to raise the damping coeffi- 
cient. Also, the damper was constructed so that variations in 
deunping coefficient were obtainable by changing spacing 
between the plates.  This could be done by changing the shims 
which maintain the gaps between the plates. The shims could 
be added or removed quickly and easily without removing the 
damper from the machine or disturbing its location on the 
shaft. The damper liquid used was 250W oil. Damper plate 
area was 176 square inches per plate.  Plate clearance to 
produce the range of coefficients was 0.002 to 0.012 inch. 

Damping coefficient of 17.2 pounds/second/inch at 50 cycles 
per second rose to 21.0 pounds/second/inch at the higher 
frequency of 150 cycles per second.  The ambient temperature 
was 80 degrees Fahrenheit. A damper plate clearance of 
0.004 inch was used to obtain these coefficients. 
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EXPERIMENTAL PROCEDURES 

Test evaluation of the model and full-size shafts was accom- 
plished in part at Battelle Memorial Institute, Columbus,       t"S^ 
Ohio, under subcontract to the Vertol Division, and in part at   ^ 
the Vertol Division test facility.  The test program investi- 
gated a series of design and environmental variables.  Con- 
clusions as to the effect of each variable were drawn from 
observations of shaft motion and shaft stress as the shaft 
was rotated.  One model and one full-size test specimen were 
used in the program. 

MODEL AND NO-TORQUE TEST STAND 

The model and no-load test stand are driven by a 15-horsepower 
direct-current motor equipped with variable speed control and 
a governor that precisely holds a speed at any desired setting. 
The flat belt-driven test spindle has the capability of turning 
small-size shafts at speeds as high as 50,000 revolutions per 
minute. With a large shaft, such as the full-size specimen 
tested, the windage and friction of the larger bearings plus 
the power requirements of the damper limit the top speed 
obtainable.  The shaft is supported by a headstock and a tail- 
stock. The tailstock is adjustable to accommodate various shaft 
lengths. 

TORQUE TEST STAND 

The load test machine is a four-square, regenerative torque 
apparatus having two fixed-speed motors of 75 horsepower each. 
The motors are connected through clutches to the low-speed 
balance shaft by V-belts. The gearboxes on each end drive 
the high-speed test spindle».  The test specimen (shaft) is 
connected between the high-speed spindles and makes up the 
four-square system.  Extended periods of operation at variable 
speeds are not possible with the present configuration of this 
machine. Maximum circulatory horsepower is 2000, as determined 
by the capacity of the gearboxes.  See Figure 22. 

INSTRUMENTATION 

The final performance of the shaft will be evident in the 
amplitudes of the vibration loops on the shaft. A method was 
developed to observe the motions of the shaft without disturbing 
or touching the surface. An optical system was used wherein a 
shadow of the shaft fell on a light-sensitive element of a 
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photocell.  The position of the shaft was used to determine 
the amount of light striking the cell, and in this way the 
voltage in the system was regulated.  The change in voltage 
was calibrated with a known deflection. Calibration of the 
system was accomplished with a dynamic shaker as well as with 
the shaft running.  Figure 23 shows a chart of calibration 
response.  Figure 24 shows the method used to obtain dynamic 
calibration, using measured rods clamped to the shaft near one 
end.  Figure 25 shows the optical pickup installed in position 
on the test machine track. 

The optical pickup unit was mounted on a track located parallel 
to the test shaft.  This arrangement enables the optical 
pickup to traverse the full length of the shaft and to define 
the mode shapes by measuring the amplitudes as it progresses. 
See Figure 1. 

A second optical unit was used to scan an eccentric on the 
tailstock spindle in order to obtain index data for the shaft 
angular position.  The signal obtained from the optical unit 
was electronically compared with the signal from the rotating 
deflected shaft for phase angle information. 

Strain gages were installed at points of expected maximum 
bending for testing under torque loading conditions.  A slip, 
ring was used to transfer gage readings to indicating and 
recording equipment. 

The additional instrumentation used in conjunction with the 
primary sensing devices was as follows: 

Item 

Oscillograph 

Amplifier 

Description 

Model 5-124 

Frequency response 
flat 0-20 kc 

Manufacturer 

CEC 

Kintel 

X-Y Plotter 

Accelerometers 

Oscilloscope Model 502 dual beam 

Mosely 

Endevco 

Tektronics 

Electronic 
Counter 

Model 523 Hewlett-Packard 
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MASK 

930 
PHOTOCELL 

12A x  7 

2  MFD 

SIGNAL 
ANALYZER 

6800/1 

^-2.75  V 

SCHEMATIC   OF  SHAFT AMPLITUDE  TRANSDUCER 

0.10   0.15   0.20  0.25   0.30   0.35    0.40   0.45  0.50   0.55   0.60   0.65 

SHAFT DISPLACEMENT FROM BOTTOM OF  PHOTOCELL WINDOW -   INCHES 

FIGURE  23.     OPTICAL PICKUP  CALIBRATION CURVE 
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TEST PROCEDURE 

During tests of the full-scale shaft, the following test 
parameters were monitored and recorded: 

1. Damper temperature 

2. Damper  support  spring  rate 

3. Shaft revolutions per minute 

4. Shaft amplitude at a given shaft  station or, 
alternatively,     shaft modal  shape  for various 
revolutions per minute 

5. Shaft bending stress   (when strain gages were 
fitted) 

6. Shaft torque   (when applicable) 

BALANCING PROCEDURE 

Balance weights were added to the shaft by using standard 
aircraft-type hose clamps.    See Figure  26.     The clamp 
adjusting screw provided the balance mass.     This enabled 
quick adjustment or transfer of the balance weights to any 
station or angle on the test shaft. 

Dynamic performance or characteristic modal  shape amplitude, 
and phase of deflection are all required  for the balancing 
procedure.    The modes were obtained  from the test shaft when 
it was excited with a  50-pound electrodynamic shaker.     Both 
damped and undamped responses,   and the modal shapes and fre- 
quencies of the damped rotating system,   are  reported in the 
Experimental Results  section. 

The  Experimental Balancing Method is a step-by-step procedure 
by which the test shaft  is balanced at each of its critical 
speeds.    The balance weights are distributed so that a pre- 
viously balanced critical will not be affected.    The experi- 
mental balancing is based on the assumption that at speeds 
very near a critical  speed,   the  shaft amplitude is due to a 
single mode,   and application of this balancing method only 
requires knowing the mode shapes for the shaft.    The selection 
of the location for balancing planes is,   according to the 
experimental theory,   rather arbitrary, and the minimum number 
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of balancing planes required is equal  to the number of modes 
to be balanced.     In addition to distributing the balance 
weights to avoid unbalancing a previously balanced mode,   it  is 
best to distribute  the weights  in a way that will have a 
minimal effect on the modes which are  to be balanced in the 
next successive  steps.     A more detailed discussion of the 
Experimental  Balancing  theory and the  choice of balance planes 
is  included in Appendix  III. 

The higher modes  require balance weights of a size which has 
little effect on the  lower modes.     Since the  lower modes are 
less  important  to  satisfactory shaft operation,   the practical 
objectives of the balancing procedures are to balance the 
third,   fourth,   and  fifth critical  speeds mode-by-mode.     The 
following balance  planes were  selected  for these objectives: 

Mode Balance Plane 

3 Station 185 
4 Station 222 
5 Stations 140 and 222 

Equal weights were used at Stations 140 and 222 for the fifth 
mode, and the weights were placed at the same angular location. 

The correct weight and angular positions for each critical 
were determined from the vector effect of an initial trial 
mass at the critical speeds. A limited number of trials were 
required at each critical to achieve a successful balance. 

In order to formalize this method for a production procedure, 
a set of calibration curves has been made for the selected 
balance positions when the amplitude and phase measurements 
are made at Station 300.  Figures 27 and 28 display these 
calibration curves. 

A summary of the production balancing procedure for the test 
shaft utilizing Figures 27 and 28 would be: 

1. Place the shaft and damper in the machine and 
position the displacement transducer at Station 
300. 

2. Run the shaft to 3200 revolutions per minute and 
record the shaft amplitude and phase of the dis- 
tortion at this speed. 
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3. Attach the weight indicated from Figure 27 at Station 
185 at the angular position from Figure 28.  Repeat 
(2) and (3), if necessary. 

4. Run the shaft to 5400 revolutions per minute and 
record the shaft amplitude and phase of the distor- 
tion at this speed. 

5. Attach the weight indicated from Figure 27 at 
Station 222 at the angular position from Figure 28. 
Repeal items (4) and (5)# if necessary. 

6. Run the shaft to 8200 revolutions per minute if 
possible, or to the next highest balance speed 
possible for the fifth critical (7100 or 7800 
revolutions per minute), and record the amplitude 
and phase of the distortion. 

7. Attach the weight indicated from Figure 27 at each 
of Stations 140 and 222 at the angular position on 
the shaft from Figure 28.  Repeat items (6) and 
(7), if necessary. 

The test procedure for the Analytical Balancing Method, 
Appendix IV, was as follows: 

1. Run the shaft at five different rotational speeds, 
preferably, though not necessarily, at the five 
critical speeds. 

2. Measure phase angle, amplitude, and mode shape at 
these speeds. 

3. Supply these data to the mathematical solution. 
Solve for amount of balance at predetermined shaft 
stations. 

4. Rerun the shaft and check results with weights added. 
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EXPERIMENTAL RESULTS 

MODEL TESTS 

The objectives of the model tests were as follows: 

1. To verify the design calculations. 

2. To determine if a single damper would effectively 
control vibration. 

3. To predict optimum damper location and damping 
coefficient for the full-scale shaft. 

Variables investigated in model tests were as follows: 

L  Damper location 

2. Damping coefficient 

3. Number of dampers 

4. End support stiffness 

Results of model tests are shown in the accompanying figures 
and tables.  The results of experiments in which damper loca- 
tion was varied from 6 to 12 inches from the shaft end are 
shown in Figure 2 9 .  Vibration amplitudes at the first and 
fifth critical speeds were lowest with the 12-inch location. 
Damper weight was 1.2 pounds. 

The results of damper locations up to 15 inches, with a 
slightly heavier damper moving weight (1.5 pounds), are shown 
in Figure 30 .  There was a sharp increase in amplitude at 
the 15-inch position. 

Variations in the damping coefficient are shown in Figure 31. 
The highest tested damping coefficient showed best control of 
amplitude at the higher critical speeds, while the lowest 
tested coefficient best controlled the first three critical 
speeds. 

The effects of the two values of end connection stiffness are 
shown in Figure 3 2.  The smaller diameter, which more closely 
approached the estimated stiffness of the full-size flexible 
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coupling,  can be  seen  to reduce the amplitude at the  fifth 
critical speed. 

A comparison of two dampers and a  single  damper  is given  in 
Table V.    For comparison,   the result of the single damper 
with 0.160-inch diameter  fixed-ended shaft  is also included, 

TABLE V 
MODEL SHAFT  PEAK-TO-PEAK VIBRATION AMPLITUDE,    INCHES 

Description of 
Configuration 

Critical Speed Mode Number 

1st 2nd 3rd 4 th 5 th 

Single damper 
0.250-inch fixed ends .125 .110 .125 .024 .016 

Double damper 
0.250-inch fixed ends .065 .038 0 0 .018 

Single damper 
0.160-inch fixed ends .160 .028 .020 .030 .005 

FULL-SCALE  TESTS 

Damper design variables  investigated were  as  follows! 

1. Damper coefficient 

2. Damper weight 

3. Damper support spring rate 

4. Damper type 

Environmental variables  investigated were  as  follows: 

1. Torque 

2. Misalignment of end connection 

3. Forced excitation of the damper 
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Balancing procedures were as follows: 

1. Experimental method 

2. Analytical method 

The  effects of damping coefficient variation are shown  in 
Figures 33 and 34.     Figure 33  indicates  that the highest 
tested coefficient gave highest amplitudes at the third and 
fourth critical  speeds.     The sudden rise   in this trace was 
due  to a malfunction  of the damper bearing spherical  seat. 
After  the malfunction was corrected,   tests were rerun.     The 
peak amplitudes were  comparable to those  of the previous runs. 

The  effects of added damper weight are  shown  in Figure 35. 
The  damper weight was   increased  from  20  to  28.3 pounds.     Ampli- 
tudes with increased damper weight were   slightly hi.her at the 
higher speed antinodes  and were  lower at  the damper.     Spring 
rate results are shown   in Figure 36.     The difference  in  spring 
rates   (168 to  2 pounds per  inch)   produced  little change  in 
shaft amplitude. 

Damper  type was  investigated by substituting an immersir/n body 
damper, manufactured by Lord Manufacturing Company   (shown 
in  Figure 15),   for  the   laboratory viscous  shear damper.     The 
maximum amplitudes experienced are shown   in Table VI.     It can 
be   seen that the amplitudes are considerably higher at the 
first three critical  apeeds but are more  comparable at the 
fourth and fifth.     Also,   the  first and  second critical  speeds 
occurred at lower revolutions per minute;   these two speeds 
correspond to the undamped natural  frequencies determined by 
vibrating the  shaft. 

TABLE VI 
COMPARISON  OF  DAMPER  PERFORMANCE 

Critical Speed 
Mode No. 

1 2 3 4 5 
Ampl rpm Ampl rpm Ampl rpm Ampl rpm Ampl rpm 

Viscous 
Shear 
Damper 
(See Figure 58) 

.192 303 .050 1524 .038 3200 .026 5400 .010 8300 

Immersion 
Body Damper 

Off 250 
Chart 

.13 1050 .080 3450 .032 5700 .026 8200 
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ENVIRONMENTAL VARIABLES 

The effect of torque is shown in Figures 37 through 42. 
These are composite figures giving amplitudes measured at the 
antinodes of the first four (in general) critical speeds. 
The amplitudes are maxima for each speed.  Torque was varied 
from 0 to 15,000 inch-pounds measured at the shaft. Critical 
speeds were found to coincide with those found in the no- 
torque test stand.  The effect of torque (at the fourth 
critical speed antinode station 29G) was to slightly reduce 
the amplitude through the speed range tested. The torque test 
stand was set for a maximum speed of 6300 revolutions per 
minute. 

Misalignment of one-half degree in the flexible coupling at 
the end connection is shown in Figure 43.  Two torque levels, 
zero and 10,000 inch-pounds, were tested.  It can be seen that 
torque did not appreciably influence the shaft amplitude at 
the higher speeds. 

Forced excitation of the damper mounting was performed under 
various torques and at varying frequencies. The effect of 
excitation at the fourth critical speed frequency is shown 
in Figure 44 (zero torque) and in Figure 45 (10,000-inch- 
pound torque). Figure 46 shews in a composite view the 
effects of excitation on the damper while operating at the 
various critical frequencies. 

Figure 47 is a reproduction of an oscillograph tape typical 
of the records made during the Environmental Conditions tests. 
Recorded information was obtained from the optical pickup and 
from bending gages located at Station 296. 

The first trace near the bottom of the sheet represents shaft 
revolutions per minute. The second trace from the bottom 
represents peak-to-peak amplitude as determined by the output 
of the optical pickup system.  The measured amplitude is a 
function of the unbalance in the shaft and the location of 
the pickup unit.  As the shaft starts to run, each revolution 
can be picked up from the trace, and the amplitude of the first 
revolution is caused by the initial band at the point of obser- 
vation.  As the first critical speed is approached, the amplitude 
increases. Each critical area can be picked from the trace 
and referenced to the speed trace directly below.  A secondary 
peak or critical appears at about 2200 revolutions per minute. 
This would be the third critical speed of 'he shaft if the 
damper mass were not present.  The actual third critical 
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PHASE ANGLE 

BENDING MOMENT 
1   INCH =  1380   IN-LB 

BENDING   "A"   PLANE 
1   INCH =  6400   IN-LB 

BENDING   "B"   PLANE 
1   INCH =  6400   IN-LB 

PEAK-TO-PEAK 
AMPLITUDE 
AT  STA.   300        \ 
1   INCH   -   .105   INCH 

RPM 
1  INCH =   2700  RPM 

FIGURE  47.      OSCILLOGR 
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appears at 3400 revolutions per minute. A point of interest 
is the shift of the center of the trace with increased speed. 
The interpretation of this is that the normal sag of the 
shaft is decreasing with speed of rotation.  The shaft has a 
tendency to straighten with speed.  It is believed that this 
phenomenon is a reaction of the hysteresis of the shaft materi- 
al due to the stresses caused by the sag with rotation.  The 
shaft rise at the center of the span has been calculated to be 
.0795 inch at 6400 revolutions per minute. 

The top two traces on the tape represent bending in two planes 
from strain gages on the shaft.  The peak of one trace coin- 
cides with the center, or zero position, of the adjacent trace 
as the gages are 90 degrees apart on the shaft.  This can be 
seen more easily at the lower speeds.  The alternating bending 
in each trace is a result of gravity force on the rotating 
shaft.  The magnitude of bending is dependent on the shaft 
station from which the measurements were taken.  Calculated 
gravity bending stresses agree with the calibrated shaft 
strain outputs. 

The center of each trace is taken as the base; deviation of 
the center from the base, with a change in speed, is an indi- 
cation of the whirl mode bending in the plane being investi- 
gated.  When the bending in both planes is added vectorially, 
the result is shown in the bending-moment curve plotted just 
above the tape data. 

The shift of the center of each strain gage trace was related 
to an arbitrary X-Y coordinate system.  This provides a de- 
scription of the angle of the whirl mode bending plane at any 
speed and is shown in the final line at 1 he top of the chart. 
Note the rapid angular change of this plane as the critical 
speeds are passed, and also note that the plane is at basical- 
ly the same angle for the first three criticals.  These 
dynamic data indicate the location of the unbalance in the 
shaft.  Plotted as shown, the data also indicate the magnitude 
of unbalance. 

The data obtained from the strain gages illustrate the basis 
for the shaft balance theory and the use of angular displace- 
ment, or phase angle, as an indicator for proper placement 
of shaft balance weight. 
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EXPERIMENTAL BAIANCING METHOD 

The maximum speed that could be attained during damper param- 
eter  tests was curtailed by  sharp increases  in amplitude 
approaching the fifth critical  speed.     To attain the desired 
speed range,   a balancing method was devised and successfully 
applied.     The result of  initial balancing is  shown  in Figure 
48.     A  significant reduction  in amplitudes  in  the higher range 
was  shown.     The weights applied are shown  in Table VII. 

TABLE VII 
PERMANENT  BALANCE WEIGHTS 

(Effective Radius =  2.375  Inches) 

Weight (grams) Stat ion (inches) Phase Angle (degrees) 

16 120 180 
16 140 30 
16 193 340 
16 194 270 
16 224 210 
16 266 180 

Following completion of the  Environmental Conditions tests,   a 
refinement of the experimental method was  successfully 
attempted.     A trial balance  at the  first critical  speed required 
550 grams  at 310 degrees  at  Station 200  to reduce  the ampli- 
tude  from 0.400 to 0.040.     The phase of this weight  indicates 
that  the   first mode unbalance   is caused by the   shaft crooked- 
ness and not by mass unbalance.     The  second mode was balanced 
independently by the addition of 80 grams at  130 degrees at 
the antinode.   Station  120. 

Table VIII   shows dynamic  data   from the  shaft with  the balance 
weights   shown  in Table VII   installed.     It  shows  phase angles 
at various  speeds and at a number of shaft  stations.     The 
stations  agree with the antinodes at the respective critical 
speeds.     Figures 49 through  5 2  show amplitude versus  speed  for 
a number  of stations. 
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The experimental balancing procedure was applied to the shaft 
with deflections as reported in Table VIII and with small 
balance weights added for controlling the fifth critical speed 
only.  These small weights did not affect the other critical 
speeds.  The results of this application can be seen in Figure 
53, which shows amplitude measurements taken at several shaft 
stations. 

After the above successful experimental balancing of the shaft, 
all the weights, including the permanent balance weights, were 
removed.  The shaft now presented a new balancing problem. 
,CüjMi^T- 54 and 55 show the unbalance shaft deflection at 
Stations 212 and 300, respectively.  Table IX gives the phase 
angles for the distortion at Stations 212 and 300. 

TABLE VIII 
PHASE ANGLE LOCATING SHAFT DISTORTION PLANE 

   ^^^ 

Shaft Speed (rpm) Shaft Station (inches) Phase Angle (degrees) 

300 200 
9 - 

155 

1380 120 
260 

37 
242 

3 260 80 
210 
280 

306 
90 

316 

5570 80 
150 
220 
290 

232 
25 

160 
20 

8000 70 
130 
180 
230 
300 

335 
138 

90 
340 
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TABLE IX 
PHASE ANGLE OF DISTORTION MEASURED AT STATIONS 

212 AND 300 FOR UNBALANCED SHAFT 

Pha se Angle at Station Phase Angle at Station 
Speed (rpm) 212 (degrees) 300 (degrees) 

300 «... 181 
1524 -- 278 
3 200 127 338 
5000 92 245 
5300 85 253 

Figure 56 shows the effect of adding one weight for the third 
critical speed (Run 171). A summary of the step-by-step pro- 
cedure is given in Table X; all the required data and numbers 
of the runs are listed. 

TABLE X 
RUN SCHEDULE FOR EVALUATION OF EXPERIMENTAL BALANCE PROCEDURE 

e Angle at Balance Weight Added 
Run No. Speed (rpm) Station 300 Before This Run 

(degrees) (grams) 

171 5376 260 10/215° - 165" 

173 5363 315 32/160° - 222" 

174 7100 180 32 gm. moved to 220° 

175 7800 180 16 gm./140o - 140" & 
222" 

176 3200 41 16 gm./140° - 140" & 
5400 35 222" 
8200 333 

177 3 200 
5400 
8200 

54 
64 
245 

10/230° - 140" & 222" 

178 3200 
5400 
8200 

46 
11 
40 

16/292° - 185" 

180 5400 43 16/284° - 140" & 222" 

181 — -- 6/300° - 222" 
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Figure 57 shows performance amplitudes of the shaft with the 
refined experimental approach. 

Figure 58 shows a comparison of the balanced and unbalanced 
shaft. 

Figures 59 and 60 show shaft response amplitudes when measured 
at different stations. 

Table XI gives the total resultant weights for each station. 

TABLE XI 
TOTAL EFFECTIVE BALANCE WEIGHTS FROM 

EXPERIMENTAL PROCEDURE 

Weight Angle 
Shaft Stat ion We ight (grams) (degrees) Mode 

140 27 185 5 

185 21 262 3 

222 29 
27 

230 
185 

4 
5 

MODE SHAPES 

The results of mode shape investigation are presented in 
tables and figures included in this report.  The shaft was 
excited with a shaker to determine the mode shapes at reso- 
nance of the undamped shaft (Table XII) and the damped shaft 
(Table XIII),  These same data are presented in graph form 
in Figure 61 for the undamped shaft and in Figure 62 for the 
damped shaft. 

The mode shapes with the shaft rotating and the initial per- 
manent balance weights in place are shown in Figure 63 (same 
data as in Table VIII). 
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FIGURE  61.     VIBRATED MODE  SHAPES  -  UNDAMPED, 
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i 20  I 60 I 100 I 140 I 180 I 220  260   300  338 
SHAFT   0    4o   80   120   160  200 , 240   280  320 
STA 

FREQUENCY 

7.1 CPS 

24 CPS 

47 CPS 

87 CPS 

132 CPS 

182 CPS 

FIGURE 62.  VIBRATED MODE SHAPES - DAMPED, 
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SHAFT  STATION 

0    20 60 140 180 260       300 338 

FREQUENCY 

5   CPS 

25   CPS 

5 3   CP3 

89  CPS 

133   CPS 

FIGURE  63.      ROTATED MODE  SHAPES. 
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All weights were removed, and the rotating mode shapes were 
recorded for the safe speeds under this condition. Figure 64 
shows the mode shapes (saune conditions as shown in Table IX 
above). 

Experimental balancing produced a shaft with satisfactory 
amplitude characteristics. Table X gives the phase angle, 
speed, and conditions of the test run to achieve the desired 
balance rasult.  Figure 65 displays the mode shapes asso- 
ciated with the experimentally balanced shaft. 

A graphical presentation of the mode shape information, togeth- 
er with phase angle of the deflection given for the shaft with 
all balance weights removed, is shown in Figure 66 (same data 
as in Table IX). 

TABLE XII 
RESONANT FREQUENCIES AND LOCATIONS OF VIBRATION 

NODES AND ANTINODES OF UNDAMPED SHAFT 

Resonant Node Stations Antinode Stations 
Frequency (inches) (inches) 

(cps) 

5.3 —— 165 
16.6 L65 80 255 
33 95 218 45 155 280 
58 60 155 246 30 110 196 295 
93 46 124 196 267 24 85 160 232 302 

135 40 104 163 222 282 22 73 133 192 250 308 

TABLE XIII 
RESONANT FREQUENCIES AND LOCATION OF VIBRATION 

NODES AND ANTINODES OF DAMPED SHAFT 

Resonant 
Frequency Node Stations Antinode Stations 

(cps) (inches) (inches) 

7.1 __ 200 
24 195 120 275 
47 140 223 92 182 288 
87 115 186 258 80 148  222  296 

132 102 160 220 283 70 130 190 255  310 

108 



2 
O 
H 
EH 
< 

W 

E-" 
DM 
< 

CO u 
0! 

en 

w 
Q o 

Q a 
% 
H 
O 
OH 

» 

D 
Ü 
H 

109 



SHAFT  STATION 

0   20   40   60  80 100 120 140 160 180200 220 240 260 280300320338 
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FIGURE 65.     ROTATED MODE SHAPES -   EXPERIMENTAL 
BALANCING  METHOD. 
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ANALYTICAL  BAIANCING RESULTS 

The analytical balancing procedure was applied to a shaft with 
the weights shown in Table VII  in place.     The results of three 
runs,   with  increasing balance weight magnitude,   are shown in 
Figure 67.     The mode shape associated with the   final run of 
this   series is given as Figure 68.    A reduction  in amplitude 
at the critical speed,   and  successful operation  to the maximum 
speed,   was obtained in this  trial of the analytical method. 

Table XIV and Figures 69 and  70 show the result of analytical 
effort to balance the entire range of critical  speeds when 
the  shaft condition  included the weights  shown  in Table VII, 
All weights were removed, returning the  shaft to the condition 
shown  in Table IX.     The analytical approach was used to solve 
this new balance problem.     Test results and phase angle are 
given  in Table XV,   and the relative amplitudes  are shown  in 
Figure  71,     It will be noted that operation beyond 5200 revolu- 
tions per minute was not possible. 

TABLE XIV 
PHASE  ANGLE  OF  DISTORTION MEASURED AT   STATION  300 

DURING  DEVELOPMENT  OF  ANALYTICAL  BALANCING   PROCEDURE 

Speed  ( rpm) 
Phase Angle at Station 300        | 

Run 155 Run 156 Run 157 Run 158    | 

I   1500 266° 274° 265° 285°     | 

j   3200 308° 263° 258° 234°     | 

5300 20° 350° 342° 318°     | 

8000 — 190° 269° 1 

Run 167 Run 168 Run 169 | 

1524 286° 290° 286°  | 

3200 308° 293° 267° 

5000 280° 285° 283° 
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EVALUATION 

SUMMARY 

The supercritical shaft program consisted of design and test 
phases. Evaluation of both phases is included in this section, 
The test results are analyzed to indicate the applicability of 
the design to helicopter use. 

A summation of program results is listed below. 
All trends indicated should be referred to the range of values 
actually tested and are drawn from the specific test specimens 
of this program. 

1. The effect of balancing was the most significant 
variable imposed in the test program.  Balancing 
was necessary in order to achieve the required 
maximum rotational speed, 

2. Damping coefficient was the next most significant 
variable. 

3. Damper moving weight should be minimized for 
minimum amplitude shaft operation. 

4. Damper support spring rate has insignificant 
effect, 

5. The viscous shear damper produced a smooth-running 
shaft, although shaft operation was satisfactory 
with immersion body damper. 

6. The environmental variables of torque and mis- 
alignment did not greatly affect shaft amplitudes. 
The addition of forced excitation to the damper 
resulted in a total shaft amplitude which was the 
sum of the normal whirl amplitude plus the forced 
amplitude with no observed amplification. 

7. Criteria for satisfactory aircraft operation 
established by maximum stress levels, structural 
loads, and damper heating were met or bettered 
by the balanced shaft. 
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8. Review of the design indicates that improvement in 
shaft operation is probable by redesigning the damper 
adapter section to improve centering and to reduce 
the moving weight. 

MODEL TESTS 

The design phase of the program was preceded by the testing 
and analysis of a dynamic scaled model supercritical shaft 
using the methods developed by Battelle Memorial Institute. 

The results of the model tests determined the location of the 
damper on the full-size shaft.  They also influenced the range 
of design damping coefficients for the full-size damper. 
Further, the values of the various critical speeds were 
determined by model tests and were scaled to the full-size 
shaft. 

The following observations are drawn in evaluating the 
effectiveness of model test results in providing design infor- 
mation which led to optimum performance of the full-size shaft. 

1» A workable damper location was established by the 
model tests. Whether this was an optimum location 
was not established since the full-size shaft 
design did not permit variation of this parameter. 

2. The best overall control of shaft amplitude on 
the model required considerably larger damping 
coefficients than those found to give best 
results on the full-size shaft. 

3. Numerical values for the critical speeds were 
predicted accurately from the model tests; they 
were different from those calculated originally. 

4. The damper support spring rate had very little 
effect on model shaft performance.  Similar results 
were observed in the full-size shaft test. 

5. The model did not accurately predict the amplifica- 
tion factor (Ref. p. 129) and therefore could not 
establish the dynamic performance of the full-size 
shaft. 
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A comparison of damper motions  indicates  a possible reason  for 
the difference  in performance characteristics between model 
and  full-size  shafts.     Refer to  the apparent damper motion 
shown by the  figure on page 183  of Reference  4 and the general 
comment  that  the damper motion  is usually about one-half the 
maximum amplitude of  the shaft.     The  figure bears out  this 
statement at the  fifth  critical  speed. 

Now refer to  the apparent damper motion  shown by Figure 65, 
which shows  the balanced full-size  shaft  at the fifth 
critical speed.     It can be  seen that the motion here  is  less 
than one-tenth the maximum amplitude ol  the shaft. 

The change  in the ratio of damper motion  to unsuppressed 
amplitude would  indicate a decrease  in effectiveness of  full- 
size  shaft damping as  compared  to  the model. 

A change may be  indicated  in the method of  relating  the 
physical characteristics of the model to  the  full-size  shaft 
to  obtain a closer relationship  in dynamic performance. 
This may enable a prediction of  the  threshold where balancing 
becomes necessary  for higher speeds. 

The  recommended  long-term solution to performance prediction 
is  establishment of a  rigorous theoretical  treatment which 
includes  the  effect of mass unbalance and  amplification  factor. 
A partial approach to  this  is presented  in the Analytical 
Balancing solution. 

FULL-SCALE TESTS 

Damping Coefficient 

Damping coefficients were evaluated  in a   2-to-l range on 
either side of  the optimum predicted by electrical analogy. 
The predicted coefficient was  found  to best  restrain shaft 
amplitudes  in  the entire range of critical  speeds.     It 
appeared that the  lowest coefficient tested   (8.5)  was  least 
satisfactory at  the higher  speeds.     The  same trend was more 
clearly  indicated by the model  shaft,  where  it was possible 
to   run through  the entire  speed  range during  the evaluation 
of  this variable.     The  full-size  tests were made before 
balancing,   and  the maximum safe  speed was  therefore curtailed. 

The damping coefficient can vary over a   limited range and  still 
provide  satisfactory operation of  the  shaft.    Changes  in 
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damping coefficient due to the temperature effect on viscosity 
can be absorbed within this range. Correction is required for 
viscosity changes which produce damping coefficients outside 
this limited range. 

Damper Mount Spring Rate 

Previous analysis had shown that the damper mount spring rate 
affected shaft action only when the resonant frequency of the 
damper spring-mass system was at or above the shaft rotational 
frequency.  In order to make a 16-pound weight resonate at 
frequencies above the shaft's operating speed range (above 100 
cps), a spring rate of over 16,000 pounds per inch would be 
required, which is impractically high.  The resonant frequency 
of a 16-pound mass supported by springs having practical rates 
of 100 to 500 pounds per inch would be in the range of 8 to 18 
cps. Therefore, it was concluded that a practical spring rate 
was of little importance to the dynamic behavior of the full- 
scale shaft in the normal operating speed range.  Spring rate 
can, therefore, be subordinate to other design considerations. 

Damper Moving Weight 

Amplitudes with increased damper weight were higher at the 
higher speed antinodes and lower at the damper. This indicates 
that higher damper weight makes the damper less effective; a 
sufficiently high moving weight would create a nodal point at 
the damper, with a probable catastrophic effect on shaft 
behavior. Therefore, the previous recommendations of minimum 
damper weight should be carefully observed. The ratio of 
damper weight to shaft weight was one-third in the test speci- 
men.  This is the maximum recommended ratio and should prefer- 
ably be reduced. 

TORQUE 

The maximum torque applied during test was 15,000 inch-pounds, 
resulting in a tube shear stress of 4800 psi. The effect of 
torque was, in general, to slightly reduce the shaft amplitude 
as shown in Figure 72.  From previous tests of model shafts 
under transient torques, it was concluded that there was no 
noticeable effect in shaft amplitude within the normal design 
stress range. One explanation of the slight reduction observed 
is that the torque loading within the end gearboxes increased 
the gear shaft bearing lateral spring rate (preload effect). 
Since the supercritical shaft was supported at one end from 
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the gearbox  shaft,   this  effect would tend  to provide  a   slight 
decrease  in  shaft amplitude. 

Misalignment 

Misalignment was added at one end of the shaft by moving the 
test machine support shaft. Amount of misalignment was one- 
half degree, measured as a line-of-sight, without reference 
to the shaft static droop. The strain gages showed a marked 
reduction in shaft moment as a result of the moment added by 
misalignment. However, there was no significant reduction in 
whirling  amplitudes   (see  Figure 73). 

Forced Excitation 

Forced excitation of the damper support resulted  in the  same 
effects  noted with previous model  testing,   in which the end 
of the shaft was  vibrated with an external shaker.     The 
measured amplitudes with excitation were a summation of the 
dynamic unbalanced and the  forced deflection.     Figure  74 com- 
pares various  conditions.     No amplification of vibration was 
noticed,   even when the damper was  shaken at a shaft critical 
frequency. 

Balancing 

The initial balancing effort was a direct development of the 
results obtained during the initial test runs of the full-size 
shaft.  It appeared to the investigators that modal balance 
could be accomplished once the phase angle relationship at, or 
near, the critical speed was established.  Further, it seemed 
likely that more than one mode could be balanced if the correc- 
tions could be placed at points of minimum influence to 
successive modes.  This procedure was attempted for the fourth 
and fifth critical speeds, with the result that the shaft 
finally ran successfully through the fifth critical and to a 
maximum 9300 revolutions per minute, while the unbalanced 
shaft had become increasingly violent beyond 7500 revolutions 
per minute. 

Balancing, therefore, has appeared to be the most important 
single variable.  To further develop and refine this, a 
balance program was advocated and performed.  The following 
evaluation is concerned with the two methods investigated. 
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Experimental Balancing 

Results  indicate that this balancing method is practical and 
effective.    There is high confidence that this method can be 
applied to any supercritical shaft.    There are,  however,   limi- 
tations  in the number of critical speeds that can successfully 
be balanced by the present technique. 

The experimental balancing  technique for mode-by-mode correction 
becomes  increasingly more difficult with the number of modes 
that are  in need of correction. 

The balance weights should be  located at stations that affect 
only the mode of interest,   leaving all other modes unaffected. 
Locating  stations that meet these requirements  for more than 
three modes has not been accomplished.    At present, when 
balance of more modes  is included,   the interaction between 
modes destroys effectiveness,   and unsatisfactory shaft per- 
formance results. 

Practical considerations used in selecting  the three highest 
modes  for correction were:     first,   that these modes produce 
the most severe shaft bending stresses;   and  second,   that the 
magnitude of correction required have little  influence on the 
two  lower modes. 

To  strengthen the conclusions as to the applicability of the 
experimental method,   the  shaft was tested  in  two  initial 
dynamic configurations. 

First,   the shaft with the balance weights previously installed 
during  the first balancing  attempt was experimentally corrected, 
and improved performance was obtained. 

Following this,  all weights were removed to produce a dynami- 
cally new problem.    Again the experimental procedure was 
applied,   and satisfactory performance was also obtained. 

The performance of the  shaft balanced by the experimental 
method can be observed by referring to Figure  58, which shows 
the  level of vibration at Station 300. 

The difference in deflected  shape of the balanced shaft and 
the unbalanced shaft can be  seen in Figure 64. 

The unbalanced shaft most resembles the classical mode shapes 
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produced by vibration tests. The deflection of the balanced 
shaft (Figure 65) bears little resemblance to this classical 
shape. The conclusion is that balancing out one mode allows 
the influence of adjacent modes to appear (modal coupling). 

Because of modal coupling, there appeared to be a certain 
minimum level of vibration which could not be entirely elimin- 
ated.  When level of vibration was reduced to zero at one 
station, the amplitude would increase at another. The best 
overall balance was achieved when the amplitude at a critical 
speed was reduced to this minimum level.  The magnitude of this 
minimum level should not limit successful operation of the 
shaft, as evidenced by the Criteria of Successful Operation. 

MODE SHAPES 

Mode shapes were obtained by vibrating the shaft and by 
rotational tests.  The vibrating modes were obtained both with 
and without damping.  The rotational tests were necessarily 
all damped, but with various degrees of balancing, ranging 
from unbalanced to the balance obtained after application of 
the experimental and analytical methods. 

The damped and vibrated shaft demonstrated resonant frequencies 
nearly identical to those found in the rotating tests using 
the same viscous damper. Accurate prediction of natural 
frequencies could therefore be made before a full-size shaft 
is rotated. On the other hand, there was a frequency shift 
with the undamped shaft, whose resonant frequencies were 
generally 70 percent of those of the damped shaft. When one 
compares data on the unbalanced rotated shaft and the damped 
vibrated shaft, a similarity in deflected shape is noted. 

As previously noted, the mode shapes of the balanced shaft 
are distorted when compared to the clearly defined modes of 
both the vibrated and unbalanced shafts.  In fact, the actual 
fifth mode. Figure 65, bears a resemblance to a fourth mode. 
Again, the conclusion is that modal coupling is evident when 
the balance weights have sufficiently suppressed the primary 
mode. The effect of the damper in suppressing the amplitude 
of the shaft in its vicinity can be clearly seen in the 
vibrated mode shapes. 

The orientation of the mode shape plane and the change in 
&ngle as-the critical speeds change can be noted in Figure 66. 
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ANALYTICAL BAIANCING 

The first task of  the  analytical method was  to provide a 
balance correction  for  the  fifth critical  speed. 

The solution of the equations indicated that two weights would 
be required and that these should be placed at points which 
the analysis indicated to be the most  effective to counteract 
the mass distribution.    The inputs to  the equations were 
obtained from rotating  test data acquired  from the  shaft while 
in the  initial test condition.     The  total balance correction 
weight used was determined by repetitive  testing.     The calcu- 
lated balance correction weights were   larger  than those 
actually found to  provide  satisfactory balance. 

A further  investigation   (Figures 69  and 70)   was conducted  to 
improve all the  remaining modes except  the  first.     The  first 
was considered primarily due to  initial bend.     Calculations 
for removal of the deflection  indicated  that a very  large 
weight would be  required.     The  test  results  for  this  set  of 
numbers  show an  improvement of the  second critical speed but 
an increased amplitude  at  the  third,   fourth,   and fifth critical 
speeds. 

A final evaluation of  the  analytical balancing method resulted 
in data which  indicated clearly that  all deflection  shapes 
were distorted.     At  1524  rpm   (second  critical),   3200 rpm 
(third critical) ,   and  5000  rpm,   the deflection  shape was  close 
to the  first critical,  with maximum amplitudes near Station 
200.      (Graphical presentation is not   included  in this report.) 

The existence of  a  stable  first mode  rotating  at a higher-than- 
first-mode rpm is  not  reasonable on  the basis of calculated 
loads  from measured deflection.     It  is  therefore hypothesized 
that the observed  shape either was  rotating  at first mode 
speed or was a planar vibration.     In  either  event,   the  shaft 
alternating  stresses were  low   (approximately 300 psi).     This 
is  far below the   stress  level of a  fifth mode  shape with  the 
same amplitude.     Therefore,   it  is believed  that the observe., 
deflection did not  represent the high bending  stresses  to be 
assumed by comparison  to deflection  amplitudes more usual  to 
the higher critical  speeds. 

Review of the  initial analytical balance  trial indicates  a 
successful balance of  the  fifth critical  speed.     In  further 
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trials, the mode shapes associated with the critical speeds to 
be corrected were erased,, in favor of a suspected non- 
synchronous first mode. The test results do not indicate a 
smooth-running shaft for this reason. As has been seen, the 
amplitudes recorded are not indicative of shaft bending and 
are probably not indicative of rotating unbalance. 

Existence of a non-synchronous first mode shape is presently 
unsubstantiated by test data. An experimental continuation of 
the analytical balancing method would attempt to define this 
motion.  Application of the previously used bending strain 
gages would be particularly useful in correctly analyzing the 
condition. 

AMPLIFICATICu' FACTOR 

The amplification factor is defined here as the ratio of cal- 
culated to actual unbalance in the system.  The actual unbal- 
ance causes the amplitudes observed.  The calculated unbalance 
causes equal deflection in a critically damped system.  In a 
critically damped system, there is no amplification (ratio of 
1). 

The actual unbalance is obtained from test results wherein a 
known weight removes all amplitude. 

The balance weights of Table XV were calculated from observed 
deflection at all criticals except the fifth. 

Amplitudes approaching the fifth critical speed were excessive, 
and the test was halted when stresses reached 10,000 psi. 
Calculated balance weight for this condition is about 400 
grams. However, the balance weight at the actual fifth 
critical speed would have been much greater than 400 grams. 

TABLE XV 
BALANCE WEIGHTS 

Mode                1 2 3 4    5     1 

Calculated unbalance      1770 

Actual unbalance 
from test                 550 

146 

80 

78 

15* 

335  400 plus 

35*  11 

*Indicated actual unbalance weight obtained 
| amplification factor from Figure 75. 

by applying 
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The effect of the amplification factor   is to make the  shaft 
sensitive to unbalances.    The balancing technique was adequate 
to control the amplitude in the test  shaft and resulted  in a 
supercritical speed  shaft system feasible  for an aircraft test 
installation. 

If,   however,   the present amplification  factor curve  is  extrap- 
olated,   it  is apparent that at still higher critical  speeds 
the tolerable degree  of unbalance becomes much ]ess.     There- 
fore,  with any given degree of balancing refinement,   there 
would be a  limitation  in the number  of critical speeds  that 
could be safely traversed.    For this reason,  reduction of 
the amplification  factor appears to be highly important,   both 
to make possible  less  sensitive production balancing require- 
ments and also to attain the  future  goal  of high-speed   (engine 
rpm)   interconnect  shafts.    The  test  shaft would be required to 
negotiate seven critical speeds  if operated at engine rpm. 

CRITERIA OF  SUCCESSFUL  OPERATION 

Continuous  safe operation of a  supercritical shaft implies 
that the  following conditions exist: 

1. Shaft stress  levels are below the  fatigue endurance 
limit for  the reliability desired. 

2. Loads  from  shaft to structural  supports are of a 
magnitude  that will not necessitate the redesign 
of these  supports to ensure adequate fatigue life 
and that will not create a  significant vibration 
input to the  structure. 

3. Damper power  absorption is  sufficiently low that 
the heat can be dissipated without a circulatory 
cooling  system and that the power  absorption does 
not represent a significant power-loss weight 
penalty. 

Tests of the balanced  full-scale shaft  show that these condi- 
tions are met.     Figure  76  indicates  the magnitude  of  several 
of  the parameters  of  interest and shows  the effects of 
balancing. 

This  figure  is a multiple cross-plot of  end load versus  deflec- 
tion  for various  speeds.    The load on tht damper  is related to 
this data and is  included.     Shaft amplitudes indicative  of  test 
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results from balanced and unbalanced shafts have been super- 
imposed. The operational range betwe »n the fourth and fifth 
critical speeds  is also shown. 

The amplitude at each critical represents a bend in the  shaft 
which whirls at  shaft speed.    Shaft bending stress  is  calcu- 
lated from the amplitude and the mode shape. 

End  load   (R)   is  the resulting orbiting load transmitted to the 
supporting transmission output  shaft.     Damper load   (L)   is  the 
orbiting  load  transmitted to the damper bearing. 

The  following   information is obtained from the  figure: 

1. The operational  speed range  falls between criticals. 
Continuous operation,   therefore,  occurs at  less than 
the amplitudes experienced  at critical, which enables 
the  ambient vibration  level  to become the design con- 
dition. 

2. Maximum  shaft bending  stress  is below 1250 pounds per 
square   inch.    Since this   is  from a synchronous whirl 
condition,   the stress  is  not cyclic  fatigue.     Cyclic 
bending  stresses are imposed by the static  sag of the 
shaft.     The magnitude of  this stress was approximately 
1200 pounds per square  inch  in the test shaft. 

3. Damper bearing  load is  at  a maximum at the  first 
critical  speed and  is  approximately 100 pounds.     The 
most  severe bearing  fatigue  condition is at  the  fourth 
critical  speed where the   load is 75 pounds  at   5400 
revolutions per minute.     Bearing  life  from  this condi- 
tion   is  in excess of  100,000 hours B-10.     It   ia  real- 
ized  that this  load is not  the only one  imposed on the 
bearing during operation   (shaft weight and damper 
inertia  are additive) ,     Consideration of all  these 
gives  evidence that expected bearing  life will be con- 
sistent with other transmission system components. 

DESIGN  REVIEW 

The full-size  supercritical  shaft  test specimen was designed 
using,   as background information,   Boeing-Vertol's  extensive 
experience with  shafting operating below the  first  lateral 
mode    and with  the knowledge gained  from previous  subscale 
shaft testing. 
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Experience with the full-scale  shaft has led to conclusions 
relevant to improved design approaches for operational shafts. 
One area which has appeared to be of particular importance is 
the damper joint.     This section allows disassembly of  the shaft, 
and must also  permit a bearing  size v/hich  is consistent with 
loads,   speeds,   and lubrication available.     The model  shafts 
did not require  such a section,   and this may be part of the 
reason for  the divergence of the   full-scale  shaft.     The damper 
joint is heavier  than an unbroken  tube.     This  characteristic 
is believed  to  affect the  shaft performance adversely. 

The damper moving weight  as tested was comprised of  7 5 percent 
necked section  and 25 percent actual damper parts.     The sensi- 
tivity to balance correction evidenced at the  fifth  critical 
is believed to  result from the  relatively high damper moving 
weight in comparison to tube weight.    A refinement of the 
damper joint  to reduce weight has been studied,   and  it  is 
possible to remove 5 pounds  from the configuration  as tested 
while maintaining  equal bending   stiffness.     However,   the opti- 
mum design solution in this area would be to continue  the 
shaft at  full diameter through the damper.     The problem of 
providing  a bearing around this  diameter would then  require 
solution.     Design studies of  roller  supports,   fluid-film,   and 
ball bearing   shaft mountings have been advanced recently. 
Indications  are that a  fluid  film or ball bearing   surrounding 
a full diameter  shaft can reduce damper moving weight  to 20 
percent of the  configuration  tested.     The design problem centers 
about the  lubrication system required for  the bearings. 

PROGRAM ACHIEVEMENTS 

The requirement set  forth  for  this program was  to produce a 
shaft which would operate supercritically while  transferring 
2000   (or more)   horsepower  28   feet  and at speeds  to 8900 rpm. 
This requirement was accomplished.     The  shaft was  designed, 
fabricated,   and tested.     Stable operation at supercritical 
speeds was demonstrated.     Maximum  speed attained was   in excess 
of the design maximum.     The  reduction in number of major  shaft 
components   (couplings,   support bearings,   adapters)   was as 
predicted.     This reduction represents a significant calculable 
weight saving,   as well as  a potential improvement  in  reliability. 

To accomplish  these results,   it was necessary to develop a 
method of dynamic balancing during  the program.     Based upon 
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the performance demonstrated during the  tests,   the  following 
is concluded: 

1. Supercritical  shafting   is  feasible   tor helicopter operation 

2. Supercritical ft design will  be advantageous  to the 
helicopter. 

3. Supercritical  shaft  development  should proceed  toward 
an  evaluation  in  the CH-47A helicopter. 
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CONCLUSIONS 

1. Satisfactory operation of the full-size,  damped,  super- 
critical speed shaft has been demonstrated.     The test 
shaft ran successfully through five critical  speeds and 
beyond the normal operation speeds. 

2. The  shaft was operated directly at each critical speed 
for  extended periods of time,  and the tests demonstrated 
that no operational speeds need be avoided. 

3. Dynamic balancing of the  full-size shaft  assembly was 
necessary to obtain satisfactory performance with a single 
damper. 

4. The effect of balancing was more significant  to  shaft 
operation than the effect of any other variable  in the 
range of variables  investigated. 

5. Existing analytical methods satisfactorily determined such 
design information as damper coefficient and damper spring 
rate. 

6. Scalt-model shaft testing was required to predict 
accurately optimum damper placement and critical speeds. 

7. Neither  analytical nor  scale-model test techniques were 
able to predict  full-size  shaft dynamic performance. 

8. A viscous damper appears   to be a good choice  for an air- 
craft  type damper,  but the  effect of viscosity change 
with temperature must be considered in this type of design. 

136 



BIBLIOGRAPHY 

1. Bishop,  R.  E.  D.#   and Gladwell,   G. M.   L.,   "The Receptances 
of Uniform and Non-Uniform Rotating Shafts,"  Journal of 
Mechanical Engineering Science.   1.(1),   pp.  78-91   (1959). 

2. Bishop,  R.  E.  D.,   and Gladwell,   G.  M.   L.,   "The Vibration 
and Balancing of an Unbalanced Flexible Rotor,"  Journal 
of Mechanical Engineering Science,   1.(1),  pp.  66-77   (1959). 

3. Bishop,  R.  E.  D.,   "The Vibration of Rotating Shafts," 
Journal of Mechanical Engineering Science»   1.(1),  pp.   50- 
65   (1959). 

4. Design Criteria  for High-Speed Power-Transmission Shafts. 
Technical Documentary Report No. ASD-TDR-62-728,   Part II, 
Air Force Systems Command,  Wright-Patterson Air Force Base, 
Ohio,  December  1964. 

5. Design Manual -  Supercritical-Speed Power-Transmission 
Shafts,  Battelle Memorial Institute,   Columbus,   Ohio,   1965. 

6. Parkinson, A.  G.,   Jackson, K.  L.,   and Bishop,  R.  E.  D., 
"Some Experiments  on  the Balancing of  Small Flexible 
Rotors:     Part I  - Theory,"  Journal of Mechanical Engineer- 
ing Science,   5.(1),   pp.   114-128   (1963). 

7. Parkinson,  A.  G.,   Jackson,  K.  L.,   and Bishop,  R.  E.  D., 
"Some Experiments on the Balancing of Small Flexible 
Rotors:     Part II  - Experiments,"  Journal of Mechanical 
Engineering Science,   5.(2),  pp.   133-145   (1963). 

8. USAAML Technical Report 65-34,  An Investigation of the 
Behavior of Floating Ring Dampers and  the Dynamics of 
Hypercritical Shafts  on Flexible Supports.  U.S.  Army Avi- 
ation Materiel Laboratories,   Fort Eustis,  Virginia, 
June 1965. 

137 



DISTRIBUTION 

US Army Materiel Command 10 
US Army Mobility Command 5 
US Army Aviation Materiel Command 6 
Chief of R&D, DA 1 
US Army Aviation Materiel Laboratories 30 
US Army R&D Group (Europe) 2 
US Army Human Engineering Laboratories 1 
US Army Test and Evaluation Command 1 
US Army Engineer Waterways Experiment Station 1 
US Army Combat Developments Command,  Fort Belvoir Z 
US Army Combat Developments Command Transportation Agency 1 
US Army Aviation School 1 
US Army Tank-Automotive Center 2 
US Army Aviation Test Board 3 
US Army Aviation Test Activity 2 
Air Force Flight Test Center,  Edwards AFB 2 
US Army Transportation Engineering Agency 1 
Air Force Aeropropulsion Laboratory 1 
Air Force Flight Dynamics Laboratory,  Wright-Patterson AFB 1 
Systems Engineering Group (RTD), Wright-Patterson AFB 4 
Bureau of Naval Weapons,  DN 22 
Chief of Naval Research 2 
David Taylor Model Basin 1 
Commandant of the Marine Corps 1 
Marine Corps Liaison Officer,  US Army Transportation School 1 
Ames Research Center,  NASA 1 
Lewis Research Center,  NASA 1 
NASA Representative,  Scientific and Technical Information Facility        2 
NAFEC Library (FAA) 2 
Federal Aviation Agency,  Washington,  D.   C, 1 
Defense Documentation Center 20 

138 

** m~" '.■•~'~mr<i 



APPENDIX  I 

HIGH-SPEED  SHAFTING  DESIGN BY ELECTRICAL ANALOGY METHOD 

The  design of the high-speed shaft by the electrical analogy 
method utilizes  the  information contained in this appendix. 

Follow the outline beginning on Page 30  of Reference 4.    Copies 
can be obtained  from the Defense Documentation Center   (DDC) , 
Cameron Station,   Bldg.   5,   5010 Duke Street,   Alexandria, 
Virginia,   22314.     Use the known shaft and damper parameters: 

I   =  338.8  inches 

D  = 4.50  inches 

d = 4.26 inches 

W =  20 lb 

K =  100 lb/inch 

1,    From equation   (17),  page 8,   Reference 4, 

=Vt fss     =V   2     L1*. w 

JL_   /   386   (10.6x10  )   4Tr(4.50u   -     4.26^)     2 

=  2 V  (338.8)1+(0.10)   64IT(4.50
2
     - 4.262)   5 

= 107 cps (8) 

2. From equation (33), page 19, Reference 4, 

A  =2 L/n 

= 2 (338.8)/5 

= 135 inches (9) 
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3. Prom equation (50), page 22, Reference 4, 

28 = 0.1091*  (D2 - d2)(D2 + d2)^ 

= 0.109 {107)%   (4.52 - 4.262) (4.52 + 4.262)3< 

= 5.7 lb/ips (10) 

4. From equation (51), page 22, Reference 4, 

X^ = + j 2 TT f W/g 

= + j (27r) 107 (20)/386 

= + j 34.9 (11) 

5. From equation   (52),   page  22,   Reference 4, 

Xk    =     -  j K/2 Trf 

=     -   j   (100)/2Trl07 

=     -   j  0.1486 (12) 

6. Combining the spring and mass reactances and dividing 
by the characteristic  shaft  impedance give  the nor- 
malized  impedance of the damper. 

xn    =     (xk + V   zs 

=     (+  j   34.9  -  j   0.1486)/6.0 

=    +  j  5.8 (13) 

7. To cancel reactances, the damper must be placed such 
that the end of the shaft (which is a universal joint 
having an infinite reactance) looks to the damper like 
a reactance of -j 5.8. Note that this is the nega- 
tive of the damper reactance. The Smith chart shows 
that a normalized reactance of -j 5.8 corresponds 
to 0.222X, while an infinite reactance corresponds 
to 0.250X. 
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8. Therefore,   the daunper must be placed at 0.250A   - 
0.222A,   or 0.028A  from one end of the shaft. 

9. Converting from damper  location in wavelengths to 
inches gives 

X =  0.028A 

=  0.028   (135) 

=3.7   inches (14) 

The basic damper parameters as established by this procedure 
are summarized as  follows: 

Number of dampers 1 

Damper  location 3.7 in.   from end X 

Damper coefficient (Approx.   3 x Zgs)       18.0 lb/ips             C 

Damper weight 20.0 lb                     W 

Damper  spring rate 100 lb/in.               K 
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APPENDIX II 

HIGH-SPEED SHAFTING DESIGN BY USE OF 
THE DESIGN MANUAL, REFERENCE 5 

The previous example illustrates the solution of a relatively 
simple shaft system by the use of the Electrical Analogy 
method.  The pin-ended shaft immediately eliminates much of 
the work relating fixed ends, or equivalent rantilever en is, 
to a configuration that can be handled by the electrical power 
transmission line theory.  Even with this simplification, it 
is apparent that further improvement in the application of 
the theory would be desirable.  The design manual was pre- 
pared by Battelle because the need for improvement of design 
procedure was recognized. 

The design manual contains empirical data obtained from a 
great number of tests and is presented in chart form so that 
a designer has merely to pick the desired values from the 
charts based on the known information of his system. 

There is no reference to the electrical transmission line 
theory or the Smith chart for the solution of the voltage 
standing wave ratios, although it should be remembered that 
this procedure was instrumental in obtaining successful shaft 
operation from which the charts were made. 

The application of the design manual charts to determine the 
characteristics of the full-size shaft and damper is now 
illustrated in the following example: 

1.  The first critical spaed of the shaft can be calculated 
using formula (3), page 6, Reference 5, 

El 
L^ 

n2 (15) 
w 

or it can be picked from the chart on page 9, Reference 
5, by using the known diameter and length and reading the 
rpm; in this case, 28 ft & 4.50 in. OD x 4.26 in. ID. 

d/D = 4.26/4.50 = .95 ratio 260 rpm (16) 
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2.  Other critical speeds can be obtained from the first by 
the ratio of rpm at first x n2 for any other speed, or 
use chart on page 11, Reference 5. 

Mode 1st 2nd 3rd 4 th 5th  | 

rpm 260 1040 2340 4160 6500 1 

3.  Damper parameters 

a.  Location along the shaft, x 

Refer to Table 2, page 14, Reference 5, and opposite 
the range of criticals 1-5 read the number of 
dampers required, 1, and in the next column the 
location from one end of the shaft, 0.05L. 

.05 x 338.8 = 16.94 inches from end of shaft  (17) 

Damping coefficient, C 

Refer to Table 3, page 16, Reference 5, and opposite 
the shaft diameter of 4.50 inches and in column for 
a d/D ratio of .95, read  [1.665 f  as a constant. 

Multiply the constant by the square root of the shaft 
rotational speed in revolutions per second to obtain 
the damping coefficient of the damper. 

5th critical speed = 6500 rpm = 108 RPS 

C / 108  x 1.665 = 17.3 lb/sec 
in. 

(18) 

c.  Damper weight, W 

See page 18, Reference 5, where it is recommended 
that the damper weight should not exceed 1/3 the 
weight of the shaft.  Refer to Table 5, page 19, 
Reference 5, and again opposite shaft diameter of 
4.5 inches and in column d/D ratio of .95, read 

as weight constant. 1.861 

Multiply the weight constant by the shaft length in 
feet to obtain the shaft weight. 
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1.861 x 28 = 52.2 lb 

1/3 x 52.2 =  17.4 lb damper wt.   W (19) 

d.  Damper spring rate, K 

General statement here indicates that the spring rate 
should be kept low to reduce the load transmitted Lo 
the structure. 

An arbitrary value will be used: 

100 lb/inch    K 

The Dasic damper parameters have been established and can 
be summarized as follows: 

Number of dampers 1 

Damper location 17 inches from end X 

Damping coefficient 17.3 lb/sec/in. C 

Damper weight 17.4 lb W 

Damper spring rate 100 lb/in. K 
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APPENDIX III 

EXPERIMENTAL BALANCING THEORY 

MODAL BALANCING THEORY 

In the series of papers by Bishop, Gladwell, et al, References 
1,2,3,6, and 7, the response of a rotating shaft is expressed 
as an infinite sununation of modal responses. The stead-state 
deflection of the geometric centerline of the shaft is 

w(x,t) = Z  T (t)* (x) (20) 
, n   n n=l 

where the vector displacement, w, is referred to a fixed set 
of axes with origin at the bearing centerline, and the series 
of functions, ij;n(x), is a set of orthogonal mode shapes for 
the shaft. 

The modal response vector, Xn{t),   resulting from both mass 
unbalance and shaft runout is 

Cn(t) = \ n     n *ULJL-_:  "n/ (21) ^(t) = (an"2 + ^n2) e1^ " ^ 

J\{*n2   " "2 )2 + 4yn2.n 

where 

Cn = tan -i / ^nV
2 

a) 2 - n2 n 

^n = n*-" mode damping ratio (external damping) 

u)n = n^ mode natural frequency 

Q    =  shaft rotational speed. 

The displacement of the mass axis from the geometric axis of 
the shaft is a vector given by 

a(x) = Z     an4»n(x), (22) 
n=l 
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and the displacement of the elastic axis of the  shaft  from the 
bearing centerline,  referred to as  shaft runout or elastic 
unbalance,   is  the vector function 

e(x)   =     I     en^n(x) . (23) 
n=l 

The forcing function from the mass and elastic unbalance can 
be considered a general defect with both magnitude and angular 
phase that are frequency dependent.  Let 

Fr(ü)   =   an9.2   +   ena)n
2; (24) 

then 

Fn(^)ei(^t  "   V 
[K2   -  "2)   2   +  4un2.n2.2] 

Cn(t) = , . .  "    .    .       (25) 

Discrete masses, m^, attached to the shaft at an axial station, 
X^, at a distance from the geometric axis of the shaft, r., 
are represented as a mass distribution. 

m(x)b(x) = Em.r. 6 (x - x.), (26) 
i 

which has  a model  series  representation 

b(x)   =     Z     b  ^„(x) (27) ,     n n n=l 
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where 

1 
bn = M„  imiri,''n<xi) 

Mn = J  m(x)  Un(x)]2  dx 

m(x) - mass per unit length of shaft. 

From equation (20), the component of shaft distortion due to 
a single mode lies entirely in one axial plane, although both 
the orientation of this plane with respect to the shaft and 
the orientation of the forcing function, Fr(^), with respect 
to the shaft are functions of frequency.  To balance the shaft 
in the n*^ mode at Q = ^n requires that the plane of the 
forcing function with respect to the shaft be located and 
that the balance weights be adjusted so that 

Mn |Fn(wn) | + ^ miri^n(xi)a)n
2  = 0. (28) 

When the balance weights  are   selected according   to  equation 
(28),the  residual vibration  is given by 

Cn(t) =. ^    n     / e (29) 

'    2   -   Q2\2   +  4yn2a)n
2^2 1 

This result is important because it indicates that balance 
weights can be used to remove the modal component of the mass 
unbalance completely and to cancel the elastic unbalance at 
any particular speed, i.e., &   =    wn.  However, there will 
always be a residual vibration when fi ^ u

n resulting from 
the elastic unbalance. 

Equation (28) also indicates that any single mode can be 
balanced by one weight located at any position on the shaft so 
long as it does not correspond to a node.  The location requir- 
ing the smallest amount of weight is obviously an antinode, 
and at any other position the effectiveness of a balance 
weight is determined by the mode shape at that location. 

147 



However, a single applied weight will, in general, affect the 
balance of all other modes as well as the one for which the 
weight is intended.  It can be shown that in order to balance 
one mode and also to make sure that k other modes are not 
affected requires a minimum of (k + 1) balance weights and 
locations.  These weights and locations must satisfy the 
following set of (k + 1) simultaneous equations: 

(k + 1) M 
I      miri^Ui)   = - -%  |FUn)| (30) 

i=l '"n 

k + 1 
I mirilJ;j{xi)     =    0     , (31) 

where the  subscript n  is  the  number of the mode being balanced 
and the  subscript j  represents each of the k other modes.     In 
practice,   the equation   (31)   determines the  relative magnitudes 
of the weights at each of the balancing stations, and their 
magnitude  is found by experimentally balancing the  shaft, 
thereby satisfying equation   (30) . 

APPLICATION  OF THEORY  FOR CH-47A SHAFT 

As discussed previously in the report,   the balancing procedure 
for the CH-47A shaft is     intended to balance only the third, 
fourth,   and fifth critical speeds without regard  to the effect 
of  the  applied weights on the  first or  second critical speeds. 
It was  also  found  from experience that  in order  to mini- 
mize the  required balancing,   it was desirable to use balance 
weights and positions  to accomplish the  following: 

1. Balance the third mode and not affect the  fourth. 

2. Balance the fourth mode and not affect  the third or 
fifth. 

3. Balance the fifth mode and not affect the  third or 
fourth. 

Since there are a total of three different modes, three bal- 
ance positions were required. These positions were selected 
with the goals of having one position at an antinode of each 
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of the modes for maximum effectiveness and also to reduce the 
modal coupling as much as possible to simplify the solution of 
equations (30) and (31) ,  The selected positions were; 

X  = 185 inches 
1 

X2 = 222 inches 

X 3 = 140 inches 

The mode shapes used for these positions were: 

3rd Mode       4th Mode       5th Mode 

4>3(xl)   = 1.0   ^(Xj) = 0     i|»5(x1) = -1.0 

*3(X2) = 0       W =  1-0    W =  0 

«M3^) = 0       ^k^s)    = ■1-0    *5(X3) = +1-0 

If we denote maQ  as the balance mass placed at Station Xg to 
balance the a mode, equations (30) and (3l) for the 
third mode when all balance weights have the same effective 
radius, r^ = R, become 

m3lMXl) + m32*3^2) = k   IF(W3) I       (32) 

m31^(x1) + m32^(x2) = 0 . (33) 

There will be a unique solution to this set of equations as 
long as the determinant of the coefficient is not equal to 
zero. 
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^3(X1) 1)/3(X2) 

¥     0 . 

The solution to the above equations for the listed data is 

(34) 

m 

m 

31 

32 

-M3   |FU3) 

a)32R 

=  0, (35) 

thereby requiring  a  single weight at Station  185.    No weight 
is calculated for Station  140#   since no effort was made to 
uncouple  the third and fifth modes. 

Similar calculations  for  the fourth and  fifth modes give 

mki   = ra43  =  0 

m. 
i+2 ui. 2R (36) 

to allow balancing at the  fourth mode without affecting the 
third or fifth and 

m 52 

m 

= m 

51 

53 

=   0 

M,   |FU)| 

u)   2R 
i* 

(37) 

to balance the fifth mode without disturbing the third or 
fourth modes.  It can be seen that the fifth mode is balanced 
by the weight at Station 140, m53; and since this station is 
also an antinode for the fourth mode, it is necessary to use 
an equal weight at Station 222, 11152» to maintain the fourth 
mode balance. 
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Since the sign convention for the mode shapes is arbitrary, 
the absolute sign of the solution for the masses has no meaning; 
but a change in sign for the mass at different locations indi- 
cates that weight should be placed on the opposite side of the 
shaft from the reference weight.  The angular placement of the 
reference mass must be determined from the orientation of the 
plane of unbalance for that node. 
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APPENDIX  IV 

MOTION AND  BALANCING OF  A FLEXIBLE  SHAFT WITH 

DISTRIBUTED UNBALANCE AND   INITIAL  IMPERFECTIONS 

INTRODUCTION 

The data included  in  this  appendix were prepared for  the Vertol 
Division by Maurice A.   Brull,   Engineering Consultant. 

The purpose of the present work  is  to provide an analytical 
theory  for predicting  the motion and  stresses  in a  shaft opera- 
ting at critical or hypercritical speeds  and to  furnish a 
theoretical basis  for  the development of a   suitable dynamic 
bajancing procedure.     This  report contains  the  theoretical 
analysis which will   later be correlated  to  the experimental 
effort. 

In  this preliminary  report,   the equations of motion  for a 
flexible  shaft with  distributed unbalance  and  arbitrary initial 
imperfections are developed;   these equations are  formulated   in 
general  terms to  allow the use of  any convenient coordinate 
system.     These equations are then specialized for a  special 
rotating coordinate  system which will be convenient  for use   in 
interpreting  experimental  data.     A  solution  to   the  equations 
is   then obtained which  shows  the  relationships between the 
unbalance and initial deflection and the  amplitudes of the 
various whirling modes. 

DERIVATION OF  THE GENERAL  EQUATIONS 

The  equations of motion are now developed  for  the rotating 
shaft,   expressed  in  a general rotating  or nonrotating 
coordinate  system.     Referring  to  Figure  77,   page    153,   the 
following  is noted: 

0     denotes  the   line between the end  supports of the  shaft. 

0'   is the position   (at  rest)   of the center of any cross 
section. 

0"   is  the position at any instant of  the center of the 
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cross  section when an elastic displacement has  taken 
place. 

FIGURE  77.      DIAGRAM   ILLUSTRATING MOTION  OF  TYPICAL   SHAFT 
CROSS  SECTION. 

P    is the position of the mass-center of the cross section 
when no elastic displacement is present. 

P'   is the  instantaneous deflected position of the cross- 
center of the cross section.     The following notation  is 
adopted: 

R =    position vector of cross-section center with 
respect to  line of  support due to initial 
deflection 

W =    displacement vector of cross-section center due 
to  shaft  flexibility 
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R    = position vector of mass-center of cross section 
Rv any instant 

n    = position vector of mass-center of cross section 
with respect to center of cross section 

t    = time 

V = absolute velocity of geometric center of cross 
section 

V = absolute velocity of mass-center of cross 
section 

a =    absolute acceleration of mass-center of cross 
section 

A = cross-sectional area 

p = mass-density of  shaft material 

E = Young's modulus 

I - moment of  inertia of shaft  about a diameter 

Fe =    net  elastic  force vector  acting on a unit  span 
of shaft 

c =    damping  coefficient per unit span of  shaft 

x =    coordinate along  line of  supports of shaft 

i,j,k =    a  set of unit vectors  fixed  in space,  with k 
along  the  line of  supports 

^1/^2 ~    unit vectors  fixed in the   shaft and  rotating 
with  it 

ü =    angular velocity vector  for shaft 

Qf        =    angular  velocity vector  for any rotating  frame 
of  reference 

u =    rate of  rotation of  shaft 
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It should be noted  that W does not  include any sag due to  the 
shaft weight,   since  elastic  forces   induced by  this  sag will be 
in equilibrium with  the dead weight. 

The instantaneous position vector  R of the mass-center of an 
arbitrary cross   section may be expressed as 

R = R    + W  + n    , (38) 

and the  absolute velocity of the mass-center is  therefore 

V = If (39) 

where the differential operator d_^ ) is with respect to a 
dt 

Newtonian frame of reference (i.e., fixed in space); in the 
present case, the frame of reference i, j, k is suitable. 
It is well known that if we choose to express the vectors R 
and V (or any other vector function) in a frame of reference 
which is rotating with angular velocity ft. with respect to 
fixed space, the absolute differential operator may be 
expressed as 

M ) = ii )  + nf X ( ) (40) 
dt     9t       r 

where dj^ )   now denotes differentiation with respect to the 
at 

rotating frame of reference.  From equations (38) , (39) , and 
(40) 

V = ISo      +iW+9iL+i7fX(R        +W     +    ^) (41) 
at 31       at 0 

is  obtained. 

It should be noted  that the velocity of the cross-section center 
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can be obtained by setting n equal to zero in equation (41) , 
Then 

=  l^o + ^ + öfX(R0 + W) 
9t  at   r  0 

(42) 

The absolute acceleration of the cross-section mass-center is 
obtained as 

a = 
"dT "  9t + "fxv ' 

(43) 

and substituting  equation   (41)   in equation   (43)   gives 

at2      at2      at2 r 
aRo + aw .   aji 
at       at      at 

a^f     _       - _    r_     _       _     _ . 
—£- x(Ro + w + n)  + fifx[nfx(R0 + w + n)J • (44) 

The equation of motion for an element of shaft of length dx 
in the spanwise direction may then be written in the form 

Fedx - C(X)V0dx =  pAadx . (45) 

Substituting  for  a  and V0 from equations (42)   and   (45)   gives 

F^  -  C(X) ^ + || +  Q£X(R0  + W, 

=   PA 
2 

^JCRQ + w +  n)  + 2?Ffx|^(R0 + w + TT)  + 

-^-X(R0  +  W +   n)   +   fijX(nfX(R0 + W +   n)} (46) 

Note that C (X)   is  the damping coefficient per unit span of   shaft. 
For the damper design of interest here,   the damping  force   is 
proportional  to  the velocity of the  cross-section center, 
given by equation   (42),     If it  is assumed that  the elastic 
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center of the cross section is located at the geometric center, 
the elastic force (per unit span) which may be obtained from 
elementary beam theory for a slender shaft is given by 

= -El 
ax14 

(47) 

For a short, stubby shaft or very  thin-walled hollow shafts, 
it may be necessary to account  for  the transverse  shear de- 
formation and modify equation   (47)   according to the Timoshenko beam 
theory.     This   is,  however,  not  important for the  cases  of 
interest here, and the general  equation of motion  is  now 
obtained by  substituting equation   (47)   in equation   (46)   and 
rearranging  forms.     The result is 

El 
9X1* 

+   C(X) at +   pA 9f_W 
Lat2 

2"fx|? 

9fif   _       _        _     _ " 
^-xw + nfx(fifXW) -pA 

' a2   _ 
+  n)   + 2fifxaT<Rc +  n)   + 

3af   _ 
-g-£-X(R0 n)   + TTfx{nfx(R0 + n)}]   - C(X) 

aRo     _   _ -i 
-— +  fifXRoJ  •        (48) 

Equation   (48)   is valid for any coordinate system provided the 
correct angular velocity vector ilf of the reference  frame is 
used wherever  indicated.     This  equation is equally valid 
whether the  shaft is whirling   (i.e.,  deflection of constant 
magnitude in time)   or undergoing  a combination of whirling and 
vibration.     It  can therefore be used to study the  transient 
behavior as well  as the steady-state characteristics  of 
rotating shafts. 

The problem of   interest here is that of whirling  shafts,   and 
several different coordinate systems are suitable  for use. 
Thus,   the unit vectors  i,j,k,  which  are fixed  in  space,  may be 
used,  or any convenient frame of  reference rotating with the 
shaft may be used.     Since the experimental program measures 
various quantities with respect to  axes fixed in the  shaft,   it 
is particularly convenient to use   such a frame of  reference, 
since it will make the interpretation of theory and experiment 
considerably easier.    We therefore  select   .he reference  frame 
ni,n2,k,   in which k is along the   line of supports,  while r^   and 
n2   are fixed  in  the shaft cross  section and therefore  rotate 
with the shaft  at an angular rate 
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the use of  vector analysis  requires that the  reference  frames 
used be  right-handed.     It  also  follows  that  OJ  is  positive when 
clockwise  about the k  axis.     At  tine zero, nj^ and  n^ coincide 
with i  and T; and at any subsequent  instant, nl   and  n2  are rotate 
by an angle  ut from J and J.     For this particular  frame of 
reference, clearly 

nf   =   ku, . (49) 

It is clear that, with respect to the frame of reference, the 
initial deflection is constant with time, so that (9R0/8t) = 0 
and R0 may be expressed as 

R0 = n^UQ   + n2v0 (50) 

where  u0   and v0  are  functions  of X only.     Similarly,   the mass 
unbalance  vector n  is  also constant with time  in  the  reference 
frame, and 

H    =    n 1 n j   + n2T]2 (51) 

can be written. 

Finally,   note that the elastic deflection W may be expressed as 

W    =    n^u +  n2V (52) 

and   note  that,     for whirling,      the magnitude of W  is constant 
and   OW/3t)   =  0.     The equation  of motion (48)    therefore re- 
duces  to 

El^-ii + C(X)ü)kxW  +  pAü)2kx(kxW) 
dx u 

= -pALü2kx[kx(R0 +  n)]   - C(X)u)kxR0. (53) 

Now,   substitute equations   (50) , (51), and   (52)   in  equation   (53) 
and note  that from the definition of vector product,  kxnp  = 

•n1  can be written   (see Figure  77).    Thus,   a vector equation 
with components in the r^   and  n2 directions  is obtained, and by 
setting  each component equal  to  zero,   the  following  two equa- 
tions  for unknowns elastic displacements u and v  are obtained: 

158 

"w-^.i ■■•■.mL 



EI cTu 
dx'4 

- PALü
2
U - iijC(x)v  =  pAcD2 (u0 + nj) + UJC(X)V0  (54) 

EI 
'dx4 

- pA(ij2v + u)C(x)u  =  PAW2 (vo + 02) ~ üJC(X)U0 . (55) , 

Equations (54) and (55) are the governing equations to be 
solved for the unknown functions u(x) and v(x)/which give the 
amplitude and orientation of the whirling shape as functions 
of tho unbalance and initial deflections. 

SOLUTION FOR ELASTIC DISPLACEMENTS 

It is convenient, because of the form of equations (54) and 
(55),to obtain their solution in the form of an infinite series 
in terms of the bending mode shapes for a beam having the 
boundary conditions prescribed for the whirling shaft.  It 
should be emphasized that the use of these eigenfunctions for 
beam bending vibrations does not imply in any way that the 
shaft is undergoing lateral vibrations.  Rather, these func- 
tions  are simply convenient on a purely mathematical basis 
to use as building blocks for the solution of the differential 
equations.  It is also pointed out that, for the case of zero 
damping, equations (54) and (55) decouple and each beam mode 
shape becomes a homogeneous solution of the equations. This 
indicates that the allowed whirling shapes (i.e., whirling 
eigenfunctions.) are identical to the lateral vibration modes , 
but, again, this does not imply that bending vibrations are 
present. 

Therefore, the eigenfunctions Xn(x) will be used for 
lateral beam vibrations, which are defined by the equation 

iv   pA  2Y xn  - ET^11
 
Xn = 0, (56) 

together with appropriate  boundary conditions.     For example, 
in  the  case of true  simple   support on  the ends  x =  o L,the 
functions  become 

mrx Xn(x)     =     sin     L (n =  1,2....)   . (57) 

It should be noted that tun are the critical speeds of the shaft 
in radians per second, which happen to coincide with the bending 
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natural frequencies.  For the case of simple end supports, it 
is clear from equations (56) and (57) that these critical speeds 
are given by 

0) 
/El n2Tr2 (58) 

n " v/ pA  T 2 

The  solution of  equations   (54)   and   (55)   may  easily be carried 
out   for  arbitrary damping  distribution  c(x)   by using  the mode 
shapes  of equation   (56)   together with the  Galerkin method. 
This will,  however,   lead  to coupled  algebraic equations  for 
the  coefficients  in  the   series  for u(x)   and  v(x)   which will 
add unnecessary complexity  to the numerical  work.     An  alter- 
nate,   approximate procedure  suggests   itself,   which will   lead 
to  a much simpler solution  and still yield good accuracy. 
Thus,   if   it  is  assumed   that  the  shaft   is whirling  in  its mode, 
with  unit amplitudes,   it  is easily shown  that  the total  damping 
force  over the entire   shaft  is given by 

L L 
Ftd    =     nju   /o c(x)Xn(x)dx  -  n2u)/   c(x)Xn(x)dx  . (59) 

It   follows,   therefore,   that the average  damping  force per unit 
length  of shaft  for  a  unit  amplitude  in  the  nth mode  is given 
by 

Fd       =     "i^n  ~  n2uCn ^60) 

where 

L 
cn    =   1/L  /  c(x)Xn

2(x)dx* . (61) 
o ' 

Equation   (60)   indicates   that,   for  each mode,   the variable 
damping  coefficient c(x)   of equations   (54)   and   (55)   may be 
replaced by an equivalent constant damping cn given by 
equation   (61).     It  should be noted  that,   if  the damping  is 
provided by a  single damper of coefficient k  at x = ^,   the 
fraction c (x)  may be written  in the  form 

c(x)   = k   (x -  O (62) 

*T'nis   is  a weighted average  force calculated  so that the 
dissipation of energy due to damping keeps   its true value. 
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where  6(x -   O   is  the  Dirac delta function at  c     Equation 
(61)   then gives 

cn     =     (K/L)Xn
2U) . (63) 

Similarly,   for a number m of dampers  located at coordinates 
Ci* 

m „ 
cn    =     I   (ki/L)Xn   (Ci) 

i=l 

where k^  are  the  constants of  individual  dampers. 

If  the equivalent uniform damping coefficient of equation   (61) 
is  now substituted  in  equations   (54)   and   (55) , 

•EI—T -  PAU^U  -   (ijcnv    =     pAwMu.   +   ni)   +  wcnvn (64) 
dx u 

El J  -   pAü)2V   +   a)CnU     =     pAa)2 (Vo   +   r]2)    -   ü)CnU0 . (55) 
dx 

Now a solution is  sought for u and v  in  the  form of an  infinite 
series in terms  of  the  functions  Xn(x)   defined previously;   thus, 
write 

00 

u(x)     =    [ AnXn(x) 
n=l 

00 

v(x)     =     I  BnXn(x). (66) 
n=l 

It  is    convenient    to    expand    the     functions u0,  v0,   ni   and 
T\2   in series in terms  of the functions  Xn(x).    This is possible 
because of the completeness and orthogonality of these eigen- 
functions.    Then 
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u0(x) = I  anXn(x), 
n=l 

v0(x) = I hnXn(x), 
n=l 

/ u0(x)Xn(x)dx 
an = ~ 

/ Xn2(x)dx 
o 

/ÄV0(x)Xn(x)dx 

bn = "IT 
/oXn2(x)dx 

(67) 

ni(x) = I  enXn(x^ 
n=l 

nl(x) = I  ^nXn(x)' n=l n n 

/nj(x)Xn(x)dx 

en = — 
K 

^n = 

/ Xn
K(x)dx 

/_n2(x)Xn(x)dx 

/0Xn
K(x)dx 

(68) 

Substituting equations (66), (67), and (68^ inequations (64) 
and (65) gives, after making use of equations 

00 00 

L{AnpA(uJn2-a)2)-u)CaBn}Xn(x)   =     [   {pA.)2 (an+en)+^1^ }Xn (x) , 
n=i n-i 

00 co 

l   {BnPAU   2-cü2)+a)CnAn}Xn(x)   =     I   (pAw2 (bn+yn)-uCnan}Xn (x)   . 
n=l n=l 

Since  these equations  must be satisfied  for all values  of x 
within the  interval   o<x<L,  coefficients  of   like terms  must be 
equated;   thus,   algebraic  equations  are  obtained  for  each  of  the 
sets  of coefficients  An and Bn.     After dividing by pA,   these 
equations may be written in the  form 
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(a)n
2-u)2)An - a)YnBn = ü)

2
 (an+en)+u)Ynbn 

u)YnAn+(wn2-^2)Bn = ,Jü2 ^n^n5 ""'Yn13!! (69) 

where Yn is a reduced damping ratio defined as 

Yn = ^f • (70) 

Equations   (69)   are easily solved  for the elastic displacement 
amplitudes;   the result is 

(ü)n
2-ü)2) [u)2 (an+en)+ü)Ynbnl+ü)2Ynfu,(bn+gn^~Ynanl 

An =    (71) 
(a)n

2-a.2)2 + a)
2Yn

2 

B„   = 
(a)n

z-a)2) [UJ
2
 (bn+gn)-ojYnanJ""a) Yn[w(an+en)+Ynbn] 

'n /22\2-L22 V '*/ 

The substitution of  equations   (71)   and   (72)   in Equations   (66) 
yields  the complete solution  for u(x)   and v(x) .     It  is  seen 
that,   if the  unbalance vector r:\(x)=T[,T\,lx)+fi2T\2(x)   and the 
initial deflection vector Ro(x)=n1Uo(x)+n2V  (xf  are known,  the 
coefficients An and Bn are easily obtained from the  coefficients 
an, bn,  en and gn which represent  the modal contributions  of 
the functions   u0,   v0,   n^and  n2. 
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INTERPRETATION OF EXPERIMENTAL MEASUREMENTS 

As has been shown previously, the determination of whirling 
amplitudes is relatively easy when the unbalance and initial 
deflection are known.  The solution of the problem,  however, 
does not stop here, because the distributed unbalance and the 
initial deflection are not necessarily known,  in fact, the 
real problem is to determine these initial imperfections from 
experimental data and to balance the shaft in such a way as to 
minimize their effects.  Thus, the coefficients an, bn, en,and 
gn must now be determined from suitable measurements.  It is 
clear at the outset that only a limited number of these coef- 
ficients can be determined, and it is logical to limit the 
values of n considered to the number of critical speeds con- 
tained within the speed range of interest.  Thus, if a shaft 
which will operate at speeds up to the fifth critical is to be 
balanced, it is likely that only the modal contributions up to 
the fifth mode in the unbalance and initial deflection will be 
of importance.  Thus, if the shaft is to be operated up to the 
m  critical speed,Am coefficients corresponding to the  modal 
contributions in the first m modes of the four "imperfection" 
functions u , v0, n^and r^ must be determined. Note that the 
functions u0 and v0 (and therefore the coefficients an and bn) 
may be determined from static measurements of the initial de- 
flection in two planes fixed with respect to the shaft.  This 
reduces the number of unknown coefficients to 2m.  It is clear 
that if the shaft is operated at m different speeds within the 
range of interest and the deflections u and v are measured at a 
representative point, a set of 2m simultaneous equations which 
will relate the coefficients en and gn to the measured ampli- 
tudes may be written with the aid of equations (66), (71), and 
(72).  It is therefore possible, in principle, to determine the 
unknown unbalance from experimental data if the initial deflec- 
tion can first be obtained from static measurements.  The m 
speeds selected for the measurements should cover, insofar as 
possible, the entire range of operation of the shaft.  In fact, 
it may be advantageous to make all measurements at the critical 
speeds, as this may, in some cases, simplify the calculations. 
The values of the coefficients An and Bn of equations (71) and 
(72) are now denoted by A^ and B^ when the speed JJ is chosen 
equal to the k"1 critical shaft speed.  It is clear from equa- 
tions (71) and (72) that, when we operate at the kth critical 
speed, the other modes of deformation will still be present. 
(If this were not so, it would be possible to show that 
Ank=Bnk=o for n*k.)  It may be possible, however, that for a 
specific problem, the amplitude of modes other than that 
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corresponding to the operating critical speed will be small. 
This would be expressed by the inequalities 

B   « B (73, 

nk    kk 

In such a case, it would be permissible to neglect all modes 
except the k*-", and the deflections would be given by 

Uk(x)   = JL  [u)k(bk+gk)-Ykak]Xk(x) 
Y^      " ^ (74) 

Vk(x)   = -i  [u)k{ak+ek)+Ykbk]Xk(x) . 
Y K 

It is clear that, if Uk and Vk are measured at the critical 
speed wkf and if ak and bk (k^l^^m) are known from the static 
measurements, then equation (74) can be used to solve for the 
modal unbalance coefficients e^ and gk.  Furthermore, the solu- 
tion is now very easy to carry out, since each one of equation 
(74) only involves one of the unknowns and the solution of 
simultaneous equations is no longer required.  This great sim- 
plification hinges upon the satisfaction of the inequalities 
(73), which in turn depends on the shaft properties. 

It has been shown that the determination of the unbalance is 
possible but requires both static deflection measurements and 
dynamic measurements.  The experimental determination of the 
static deflection in two planes is a fairly simple matter under 
laboratory conditions, but it may be difficult to accomplish in 
production.  It would therefore be desirable to eliminate this 
step so that only a dynamic deflection measurement would be re- 
quired. An obvious possibility is the case in which the 
whirling is the result primarily of the critical deflection, 
while the actual mass unbalance is small.  In such a case, the 
coefficients en and gn may be neglected compared to an and bn 
in equations (71) and (72) or (74).  As a result, the dynamic 
deflection measurements may be used to solve for an and bn for 
as many harmonics as desired.  As before, the problem is sim- 
plified considerably if the inequalities (73) hold.  Of course, 
this situation in which the initial deflection is the dominar"« 
effect is more likely in a solid shaft than in the hollow shaft- 
ing of interest here. A different approach n.ay be used to 
accomplish the same result, however, as will be shown below. 

Referring to equations (69), note that the combination of co- 
efficients (an+en) and (bn+gn) appears on the right-hand side. 
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If the damping coefficient is small, so that Yn
<<'jJ, it is per- 

missible to add the term ü)Yngn to the right-hand side of the 
first of equations (69) and to subtract u)Ynen from the right- 
hand side of the second.  It is noted that if gn and en are 
small compared to an and bn, these modifications are again 
possible so that this new approximation contains the previous 
special case.  With these changes, equations (69) may be 
written in the form 

(ü)n
2-a)2)An-a)YnBn = ^2r +^YnS 

(75) 
(JY nAn+(,un2-a)2)Bn = a)2sn-u)Ynrn 

where 

r„ = a,, + e n   n   n 

s = b + g„ (76) 
n   n  ^n. 

The shaft imperfections are now described by the two sets of 
coefficients rn and sn rather than by four sets as before. 
Since the ultimate goal is to decrease the amplitudes An and Bn, 
it is unnecessary to distinguish between the effects of initial 
deflections and those of mass unbalance.  In fact, this approxi- 
mate method is equivalent to defining "an effective unbalance" 
described by the functions 

u0(x)+n1(x) = Z     rnXn(x) (77) 
n=l 

v0(x)+n2(x)   =     I     snXn(x). 
n=l 

Equations   (75)  may be  solved with the result 

^2 (,,,   2_,,12_v    2\r.   +,,,,,,    2 
An = (0,2-^)2^2^ (78) 

'n    "   '     "   'n 

W2((i)n2-a)2-Yn2)sn-a)u)n2Ynrn 
Bn  = (a)n2.a!2)2 + a)2Yn2 • (79) 

Equations (7Q) and (79) may be substituted into equations (66) 
to obtaii the deflection functions u(x) and v(x) in terms of 
ere effective; modal unbalance coefficients r and s .  Then, if 
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measurements of u and v are obtained at any point for m differ- 
ent operating speeds, these data h.ay be used to compute the co- 
efficients rn and sn for n=l,2,...m.  Thus, the first m modal 
contributions of the effective unbalance are determined without 
any need for a static initial deflection measurement.  It 
should be noted that, as before, there is an advantage if the 
operating speeds chosen to make measurements are the first m 
critical speeds.  if the coefficients obey the inequalities 
(73), 

ülk5k"Ykrk 
Uk(x>=  7k  Xk(x) 

Y
ksk+U)krk (80) 

Vx)= —7k Xk(x) 

is obtained immediately, and equations (80) may easily be solved 
for r, anrl s, . 

Therefore, it has been shown that if Y]c
<<w, the effective unbal- 

ance can be determined from one dynamic measurement of the 
whirling c'T.plitude. The computations are greatly simplified 
again i'' rh« inequalities (73) are satisfied; this point can, 
of COULK^, be checked quite easily for any particular shaft 
design. 

DETERMINATION OF BALANCE CORRECTIONS 

The perturbing force caused by the effective unbalance may be 
obtained from equations (64) and (65). Thus, the perturbing 
force per unit length of shaft is given by 

Fp  =   nipAu)2 (U0+ri1)+n2pAa)2 (v0+ri2) . (81) 

Substituting for the effective unbalance from equations (67), 
(68), and (76), 

_    "> 

Fp =  I pA<.2(nirn+n2sn)Xn(x). (82) 

n=l 

The problem of balancing a given shaft when rn and sn have been 
determined is now reduced to the determination of balance 
corrections which willjproduce a suitable corrective force P*. 
This correction force F* must, insofar as possible, cancel out 
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the effect of the disturbing force ¥    in as many modes as neces- 
sary to cover the design range of «. 

Now, assume that balance corrections are introduced by attach- 
ing at k points ij_   concentrated masses M^ at distances e^ from 
the geometric axis and at angles e . with respect to the unit 
vector n^ ,    The unbalance force per unit length due to such 
concentrated masses may be written in the form 

k     o -     - (83) 
F* =  E M. e-GJ

2
 [n. cose .+n0sine . ] 6 (x-C. ) 

. , i i  l 1   i 2   i     i 
i=l 

where 6 (x-c^) is the Dirac delta function at ^.  It is con- 
venient to expand this expression in a series in terms of the 
mode shapes of the shaft; thus, 

k 
f*=l  idMixI I  M1-ei[n1cosei+n2sinei]Xn(q)   (84) 

n=l Nn  i=l 

where Nn= / Xn
2(x)dx. 

o 

Adding equations (82) and (84) gives the net disturbing force 
per unit length resulting from both the initial unbalance z-.n-l 
the correction masses? the result is 

?p+F* = uj2 I   {pA{n1rn+n2sn)+Ji. J Mj-ei (njcosei+n^ine.) X (q) 
n=l Nni=i (Pi*) 

It is clear from equation (85) that in order to eliminate the 
disturbing force in a given mode, the coefficient of Xn(x) for 
the mode must be made to vanish.  Since these coefficients are 
themselves vectors with components in the Hj and n2 directions, 
two equations relating the correction masses to the unbalance 
are obtained for each mode; thus 

I  MieiXn(Ci)cosei = -pANnrn (86) 

k 
I 

i=l 
IiMieiXn(4i)sinei  =  -pANnsn   # (87) 
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It is now clear that for each mode which must be suppressed, 
two equations must be written in the unknowns M-e-cosei and 
M^e^sine^. Also note that ci   is determined by the shaft radius 
and method of attachment of the mass correction, so that the 
only true unknowns are each mass M^ and the angle 6^ at which 
the mass must be mounted.  For convenience, the notation 

M.e.cosei - pil 

niti3inei  - pi2 

is introduced; equations (86) and (87) may then be written 

J1Pil
Xn^i) = pANnrn 

I Pi2Xn<*i> = pANnV 
1=1 

(88) 

(89) 

It is now clear that for each mode that is to be eliminated, 
two equations can be written in two unknowns, which determine 
one mass balance correction.  In fact, if the first k modes are 
to be suppressed, a system of k masses can always be determined 
from equations (89) which will accomplish the purpose.  From a 
design viewpoint, however, this may not be the most advanta- 
geous system of balance weights, and it may be desirable to 
attempt a correction of m modes with k masses where k<m.  in 
such a case, the problem of satisfying 2m equations [yielded 
by equations (89)] for 2k unknowns would arise. The correction 
can be made by making the system of equations (89) linearly 
dependent to a suitable degree so that the number of independent 
equations is reduced to the number of unknowns. There may be a 
method to optimize the way in which this reduction is carried 
out, but this is outside the scope of the present report. The 
fact is that a solution can be found by prescribing a suitable 
number (i.e., m-k) of relations between the functions 
Xn(Ci)(n=l,2...m,  i=l,2...k), and this is accomplished in 
practice by shifting the stations at which correction masses 
are to be attached. Thus, the problem of determining the 
position and magnitude of corrections can be handled analyti- 
cally. Two additional remarks must be made, however, in 
connection with the selection of correction masses.  First, when 
the calculations for unbalance are carried out by hand, it is 
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convenient and accurate to use theoretical modes; but when 
modal information  is used in equations   (89), it  is necessary 
to use actual modes because the corrections are  sensitive to 
the coefficients XnUi),  which could be in error  if theoretical 
and actual modes deviate appreciably.     Second,   it has been 
found by experience that  equations   (89)   tend to overestimate 
the correction needed.     This  is probably due  to  the  fact that 
when measurements  are made at critical  speed,   the effective 
damping of the  shaft is  small so  that the unbalance  is over- 
estimated.     Thus,   the proper balancing procedure until  an 
improvement can be made would consist of locating  the masses 
by the above method but  trying an  initial balancing with a 
fraction   (of the order of 20 percent)   of the calculated 
magnitude and  retesting  the  shaft,   monitoring  the amplitude 
aijd phase angle.     It should be noted  that  the whirling behavior 
becomes more and more sensitive  to  small balance changes  in the 
higher modes   (because of  larger amplification  factors), 
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